

June 29, 2001

The Honorable Gary E. Walsh Executive Director South Carolina Public Service Commission Post Office Drawer 11649 Columbia, South Carolina 29211

Re: Carolina Power & Light Company's 2001 Resource Plan Docket No. 2001-265-E

Dear Mr. Walsh:

Pursuant to the Public Service Commission's Order No. 98-502 issued in Docket No. 87-223-E, Carolina Power & Light Company hereby submits for filing an original and ten copies of its 2001 Resource Plan. We are also enclosing one extra copy to be stamped and returned.

Sincerely,

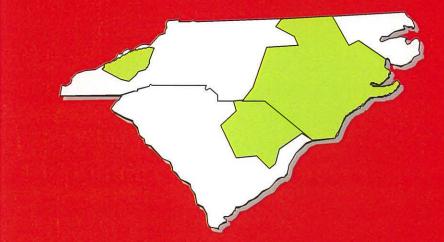
B. Mitchell Williams Manager, Regulatory Affairs

BMW

Enclosures

c: William F. Austin, Esq. Serena D. Burch, Esq. Elliott F. Elam, Jr., Esq. Mr. Mitchell M. Perkins William Larry Porter, Esq. Garrett A. Stone, Esq.

55006


Progress Energy Service Company, LLC P.O. Box 1551 Raleigh, NC 27602

F,

Resource Plan

South Carolina Public Service Commission Docket No. 2001-265-E June 30, 2001

TABLE OF CONTENTS

Int	roduction1
1.	The demand and energy forecast for at least a 15-year period2
2.	The supplier's or producer's program for meeting the requirements shown in its forecast in an economic and reliable manner, including both demand-side and supply-side option
3.	A brief description and summary of cost-benefit analysis, if available, of each option which was considered, including those not selected
4.	The supplier's and producer's assumptions and conclusions with respect to the effect of the plan on the cost and reliability of energy service, and a description of the external, environmental and economic consequences of the plan to the extent practicable

Appendices

ک د

ί,

A.	Resource	Plan	(Winter)	ļ
----	----------	------	----------	---

- B. Resource Plan (Summer)
 C. Levelized Busbar Costs of All Technologies (graph)
 D. Levelized Busbar Costs of Least Cost Technologies (graph)
 E. Levelized Busbar Cost Comparison by Duty Cycle

INTRODUCTION

ſ,

Carolina Power & Light Company, a subsidiary of Progress Energy, provides electric power to approximately 1.2 million customers in a 33,000 square mile area. The service area covers much of eastern and central North Carolina, the Asheville area in western North Carolina, and the northeast quadrant of South Carolina.

To provide a reliable, safe and economic supply of electricity for those customers, CP&L annually develops long-term forecasts of system energy sales and peak loads, and reviews and revises capacity addition plans. Further, the states of North Carolina and South Carolina each have in place rules requiring the filing of specific information regarding CP&L's resource plans. This report presents CP&L's current Resource Plan and contains the information required in the South Carolina resource plan filings.

1. The demand and energy forecast for at least a 15-year period.

Peak Load and Energy Forecast

Methods

CP&L's forecasting processes have utilized econometric and statistical methods since the mid-70s. During this time enhancements have been made to the methodology as data and software have become more available and accessible. Enhancements have also been undertaken over time to meet the changing data needs of internal and external customers.

The System Peak Load Forecast is developed from the System Energy Forecast using a load factor approach. This load forecast method couples the two forecasts directly, assuring consistency of assumptions and data. Class peak loads are developed from the class energy using individual class load factors. Peak load for the residential, commercial, and industrial classes are then adjusted for projected load management impacts. The individual loads for the retail classes, wholesale customers, NCEMPA, and Company Use are then totalized and adjusted for losses between generation and the customer meter to determine System Peak Load. Fayetteville Public Works Commission Replacement Interchange Contract is then added to the System Peak Load to determine Net Internal Load.

Wholesale sales and demands include a portion that will be provided by the Southeastern Power Administration (SEPA). NCEMPA sales and demands include power which will be provided under the joint ownership agreement with them. Also included in the forecast is a replacement interchange contract of approximately 230 MW with the Fayetteville Public Works Commission (FPWC) instituted in July 1994. On January 1, 1996, NCEMC began receiving service for 200 MW of load from another supplier. This portion of NCEMC load is not included in the forecast.

Summaries of the Peak Load and Energy Forecast are provided in the following table. Peak load and energy data presented in the table is at generation level. The table provides both CP&L's **System Forecast** and **Net Internal Forecast**. CP&L's **System Forecast** *does not include* power provided under the Company's replacement interchange contract with the Fayetteville Public Works Commission (FPWC). CP&L's **Net Internal Forecast** *does include* the FPWC replacement interchange contract. CP&L System and CP&L Net Internal peak load forecasts assume the use of all load management capability at the time of system peak.

Forecast Assumptions

Generally, growth in the standard of living as reflected in personal income and Gross Domestic Product (GDP) per capita is expected to slow modestly relative to recent levels. The labor force can be predicted with some reliability because the working population for the early 21_{st} century has already been born. Real dollar prices are used to enhance model

reliability during periods of varying inflation. The forecast assumes that our customers will tend toward continuing energy efficiency in the future.

The forecast of system energy usage and peak load does not explicitly incorporate periodic expansions and contractions of business cycles, which are likely to occur from time to time during any long-range forecast period. While long-run economic trends exhibit considerable stability, short-run economic activity is subject to substantial variation. The exact nature, timing and magnitude of such short-term variations are unknown years in advance of their occurrence. The forecast, while it is a trended projection, nonetheless reflects the general long-run outcome of business cycles because actual historical data, which contain expansions and contractions, are used to develop the general relationships between economic activity and energy use. Weather normalized temperatures are assumed for the energy and system peak forecasts.

PEAK LOAD and ENERGY FORECAST (Annual Peak Load and Energy at Expected Peaking Temperatures)										
	System	Fayetteville	Net Internal	Net Internal						
	Peak Load Replacement Demand									
Year	(MW)	(MW)	(MW)	(MWh)						
2001	11,260	180	11,440	60,593,920						
2002	11,539	210	11,749	62,450,750						
2003	11,699	230	11,929	64,146,356						
2004	11,962	230	12,192	65,807,478						
2005	12,239	230	12,469	67,461,328						
2006	12,503	230	12,733	69,128,868						
2007	12,775	230	13,005	70,803,427						
2008	13,030	230	13,260	72,440,230						
2009	13,300	230	13,530	74,100,277						
2010	13,563	230	13,793	75,760,078						
2011	13,826	230	14,056	77,418,880						
2012	14,096	230	14,326	79,073,210						
2013	14,375	230	14,605	80,720,308						
2014	14,643	230	14,873	82,364,164						
2015	14,916	230 ·	15,146	83,984,787						
2016	15,177	230	15,407	85,587,624						

2. The supplier's or producer's program for meeting the requirements shown in its forecast in an economic and reliable manner, including both demand-side and supply-side option.

See Appendices A and B.

٠,

٠,

3. A brief description and summary of cost-benefit analysis, if available, of each option, which was considered, including those not selected.

The utility industry continues to experience significant changes that challenge the planning process for providing the resources needed to meet growing electricity demands. Industry and environmental regulations plus increasing competition in the wholesale power market are some of the issues that face utilities. In order to make sound resource planning decisions, it is necessary to assess the costs of future generation technologies. This report is intended to provide a consistent and documented database for use in the Company's planning studies.

In the most recent analysis, seventeen technologies were analyzed (see Appendices C and E). Except in cases where data specific to CP&L and our service territory was obtained, the data presented in the report are **generic** in nature and thus not site specific. Cost and operating data are presented for conventional generation technologies that utilize non-renewable resources, for advanced generation technologies that are still being developed, and for alternative technologies that utilize renewable sources of energy. The costs and operating parameters are adjusted to reflect installation in the southeastern United States. The operating characteristics are based on state-of-the-art designs, with some of the advanced and renewable resource technologies *not* being currently available commercially. The primary source of information in developing the database is the EPRI Technical Assessment Guide (**TAG**) database. When other data are used or where adjustments are made to EPRI data, the reasons are indicated.

Of the seventeen technologies evaluated, only ten (10) are commercially available at this time and only five (5) of those are mature, proven technologies. This is important to keep in mind when reviewing the data, as some of the least cost options such as the solid oxide fuel cell may not yet be available. Also, the less mature a technology is, the more uncertain and less accurate its cost estimates may be.

Busbar costs allow for comparison of fixed and operating costs of all technologies over different operating levels. This analysis is done using the spreadsheet program COMPETE. It compares the long-term economics of future power plants and reports the busbar costs by capacity factor. Data input to COMPETE for each technology include fixed and variable O&M, fuel, construction costs, and the levelized fixed charge rate.

Most recent analysis of busbar costs for technologies that are commercially available indicates that the combustion turbine (CT) is the most economical generation for peaking duty cycles, and the combined cycle (CC) is the preference for intermediate and base load operation (see Appendices D, E). Combustion turbines and combined cycles also have the lowest overnight capital costs.

Although fuel cells appear to be competitive with the CC if projected cost reductions can be achieved (see Appendices C and D), they are currently still in the demonstration stage. Fuel cells can be assembled building block style to produce varying quantities of electric generation. However, as currently designed, a sufficient number of fuel cells cannot be practically assembled to create a source of generation comparable to other existing technologies, such as CC. Further development of this technology is needed before it becomes viable as a resource option.

Wind projects appear competitive at certain capacity factors, however, the geographic and atmospheric characteristics of the Carolinas limit their ability to achieve those capacity factors. Wind projects must be constructed in areas with high average wind speed. Studies conducted by NCAEC (North Carolina Alternative Energy Corporation) and Pacific Northwest Laboratory that have examined the potential for wind projects in North Carolina have determined that only a limited number of locations exist with potentially sufficient wind speed, and that those locations are likely not available for commercial operations. Because a wind project would not be expected to operate above 20-25% capacity factor in our geographic area, it is not a viable alternative to the CC for intermediate duty. Further, because wind is not dispatchable, it is not a suitable alternative to the CT for peaking duty. 4. The supplier's and producer's assumptions and conclusions with respect to the effect of the plan on the cost and reliability of energy service, and a description of the external, environmental and economic consequences of the plan to the extent practicable.

Effect of plan on cost of energy service

CP&L's Resource Plan (RP) is not significantly different from previous plans. This Plan continues to be a plan that provides low cost energy service. The RP contains additions of combustion turbine (CT) and combined cycle (CC) units, and also capacity uprates to the Harris and Brunswick nuclear plants.

Peaking resources such as combustion turbines are constructed and operated during peak load periods or emergency conditions. Combustion turbines have relatively low capital costs but higher operating costs than intermediate or base load generation, and are the most cost-effective new resource when a generator is needed to operate less than approximately 20% of the time. Combustion turbines can be started quickly in response to a sharp increase in customer demand and help supply power during cold winter mornings and hot summer afternoons.

Combined-cycle units, which consist of combustion turbines equipped with heat recovery steam generators, are the most cost-effective new resource when a generator is needed to operate more than approximately 20% of the time. Combined-cycle units have higher capital costs than peaking units, but lower operating costs. The heat recovery steam generator utilizes the hot exhaust gases from the combustion turbines to produce steam and generate additional megawatt hours by a steam turbine generator. Because the steam turbine is powered by waste exhaust gases from the combustion turbines, no additional fuel is used to produce electricity from the steam turbine generator. The efficient operation of the combined-cycle facility will burn less gas than a combustion turbine to produce a megawatt hour of generation, and will reduce generation produced by less efficient combustion turbines burning both gas and oil. These fuel savings will directly benefit ratepayers. Combined-cycle facilities take several hours to start-up and bring to full power output and are best utilized to operate at higher capacity factors and respond to the more predictable system load patterns.

The Company's resource plan also includes approximately 225 MW of additional baseload capacity as a result of planned modifications to uprate the Harris and Brunswick nuclear facilities. Baseload nuclear capacity is typically fully loaded due to its low operating cost, except during times of forced outage or refueling. This additional nuclear generation will offset higher cost fuel sources providing further benefits to ratepayers. The Company's resource plan consisting of additional nuclear capacity and new combustion turbine and combined-cycle capacity, in addition to existing low-cost nuclear

and coal facilities, will continue to provide reliable and cost-effective generation to serve customer energy needs.

Effect of plan on reliability of energy service

The reliability of energy service is a primary input in the development of the RP. This Plan provides for a reliable supply of electricity.

Carolina Power & Light Company employs both deterministic and probabilistic reliability criteria in the resource planning process. The Company establishes a reserve criterion for planning purposes based on probabilistic assessments of generation reliability, industry practice, historical operating experience, and judgement. Probabilistic assessments are significant because they capture the random nature of system behavior such as generator equipment failures and load variation.

CP&L conducts multi-area probabilistic analyses to assess generation system reliability. A multi-area analysis takes into consideration the capacity assistance available through interconnections with neighboring electric utilities. Decision analysis techniques are also incorporated in the analysis to capture load uncertainty. Generating reliability depends on the strength of the interconnections, the generation reserves available from the neighboring systems, and also the diversity in loads throughout the interconnected area. Thus, the interconnected system analysis shows the overall level of generation reliability and reflects the expected risk of capacity deficient conditions for supplying load.

A Loss-of-Load Expectation (LOLE) of one day in 10 years is a widely accepted criterion for establishing system reliability. CP&L uses a target reliability of one day in ten years LOLE for generation reliability assessments. LOLE can be viewed as the expected number of days that the load will exceed available capacity. Thus, LOLE indicates the number of days that a capacity deficient condition would occur, resulting in the inability to supply customer demand. Results of the probabilistic assessments are correlated to appropriate deterministic measures such as capacity margin or megawatt reserve for use in developing the resource plan.

Reliability assessments have shown that reserves projected in CP&L's RP are appropriate for providing an adequate and reliable power supply. Reserves are lower than historical levels due to a number of factors. Growth of the generating system and recent additions of smaller and highly reliable CT capacity increments to the company's resource mix decrease the level of reserves needed to maintain adequate reliability. Performance of CP&L's existing nuclear and fossil fleet has greatly improved over the past few years, which has also significantly contributed to improved system reliability. Finally, shorter construction lead times for building new power plants allows greater flexibility to respond to changes in capacity needs and thus reduces exposure to load uncertainty.

Environmental consequences of plan

`s

The plan relies, to a large extent, on the use of gas-fired combustion turbines and combined cycle units. These units are the most environmentally benign, economical, large-scale capacity additions available. The new, advanced designs of these technologies are more efficient (as measured by heat rate) than previous designs, resulting in a smaller impact on the environment. The Plan also contains more than 225 MW of nuclear additions through the uprating of the Harris and Brunswick plants. These additions will provide a significant amount of energy with virtually no environmental impact.

:

CAROLINA POWER & LIGHT CO. June 2001 RESOURCE PLAN (Winter)

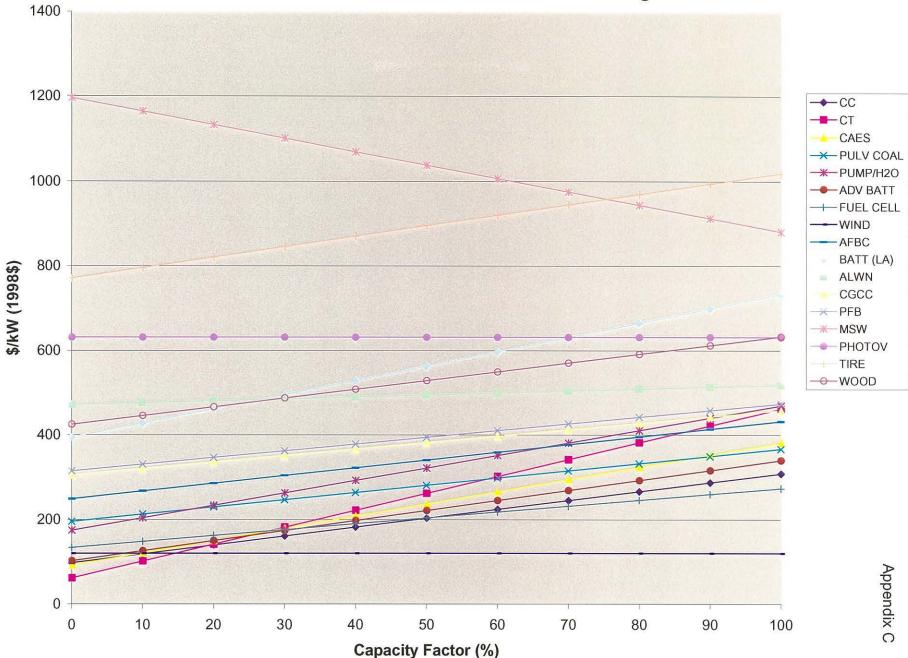
	<u>01/02</u>	<u>02/03</u>	<u>03/04</u>	<u>04/05</u>	<u>05/06</u>	06/07	07/08	<u>08/09</u>	<u>09/10</u>	<u>10/11</u>	<u>11/12</u>	<u>12/13</u>	<u>13/14</u>	<u>14/15</u>	<u>15/16</u>
GENERATION ADDITIONS Rowan Co. CT	549														
Richmond Co. CT	720	540	180												
Richmond Co. ST		160	160	160											
Harris NP Uprate	40														
Brunswick NP Uprate		50	50	43	43										
Undesignated Capacity (1)	-	-	-	-	178	-	178	357	357	535	357	357	357	357	357
INSTALLED GENERATION															
Combustion Turbine	3,843	4,023	3,843	3,483	3,483	3,483	3,483	3,483	3,483	3,483	3,483	3,483	3,483	3.483	3,483
Combined Cycle	106	626	1,146	1,666	1,666	1,666	1,666	1,666	1.666	1,666	1,666	1,666	3,463 1,666	3,463 1,666	3,463 1,666
Hydro	216	216	216	216	216	216	216	216	216	216	216	216	216	216	216
Fossil Steam	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369	5,369
Nuclear	3,249	3,299	3,349	3,392	3,435	3,435	3,435	3,435	3,435	3,435	3,435	3,435	3,435	3,435	3,435
Undesignated Capacity (1)	-	-	-	-	178	178	357	713	1,070	1,604	1,961	2,317	2,674	3,030	3,387
PURCHASES & OTHER RESOURC	ES														
SEPA	109	109	109	109	109	109	109	109	109	109	109	109	109	109	109
NUG Renewable NUG Cogeneration	67	63	63	63	18	18	18	11	5	5	5	5	4	4	2
Fayetteville	231 285	68 285	68	68	68	68	-	•	-	-	-	-	-	-	-
AEP/Rockport 2	200	265	285 250	285 250	285 250	285 250	285	285	285	285	285	285	285	285	285
Broad River CT	696	870	870	230 870	230	250 870	250 870	250 870	870	870	870	070	070	070	070
												870	870	870	870
TOTAL SUPPLY RESOURCES	14,421	15,178	15,568	15,771	15,947	15,947	16,058	16,407	16,508	17,042	17,399	17,755	18,111	18,467	18,822
UNIT POWER SALES	549	549	549	549	549	549	549	549	549	549	549	549	549	549	549
NET RESOURCES FOR LOAD	13,872	14,629	15,019	15,222	15,398	15,398	15,509	15,858	15,959	16,493	16,850	17,206	17,562	17,918	18,273
PEAK DEMAND														•	
CP&L Retail	8,114	8.339	8,547	8,763	8,966	9,177	9,375	9,579	9,780	9,980	10,189	10,398	10 500	10.004	44.000
CP&L Wholesale	2,639	2,709	2,769	2,816	2,861	2,908	2,951	3,004	3,053	3,300	3,152	3,209	10,599 3,262	10,804 3.318	11,002 3,370
SYSTEM PEAK LOAD	10,753	11,048	11,316	11,578	11,828	12,085	12,327	12 583	12,833	13,083	13,341	13,607	13,862	14,122	14,372
Fayetteville Replacement	210	230	230	230	230	230	230	230	230	230	230	230	230	230	230
Firm Contract Sales	750	750	550	550	100	-	-	-	-	-	-	-	-	-	
FIRM OBLIGATIONS	11,713	12,028	12,096	12,358	12,158	12,315	12,557	12,813	13,063	13,313	13,571	13,837	14,092	14,352	14,602
Large Load Curtailment Voltage Reduction	322 165	322 169	322 174	322 178	322	322	322	322	322	322	322	322	322	322	322
TOTAL LOAD	12,200	12,519	12,592	12,858	183 12,662	187 12.824	192	196	201	205	209	214	218	222	226
	12,200	12,019	14,002	12,000	12,002	12,024	13,070	13,331	13,586	13,840	14,102	14,372	14,631	14,896	15,150
RESERVES (2)	2,158	2,601	2,923	2,864	3,241	3,083	2,952	3.045	2.896	3,180	3,279	3.370	3,470	3,566	3.672
CAPACITY MARGIN (3)	15.6%	17.8%	19.5%	18.8%	21.0%	20.0%	19.0%	19.2%	18.1%	19.3%	19.5%	19.6%	19.8%	19.9%	20.1%
RESERVE MARGIN (4)	18.4%	21.6%	24.2%	23.2%	26.7%	25.0%	23.5%	23.8%	22.2%	23.9%	24.2%	24.4%	24.6%	24.8%	25.1%

NOTES:

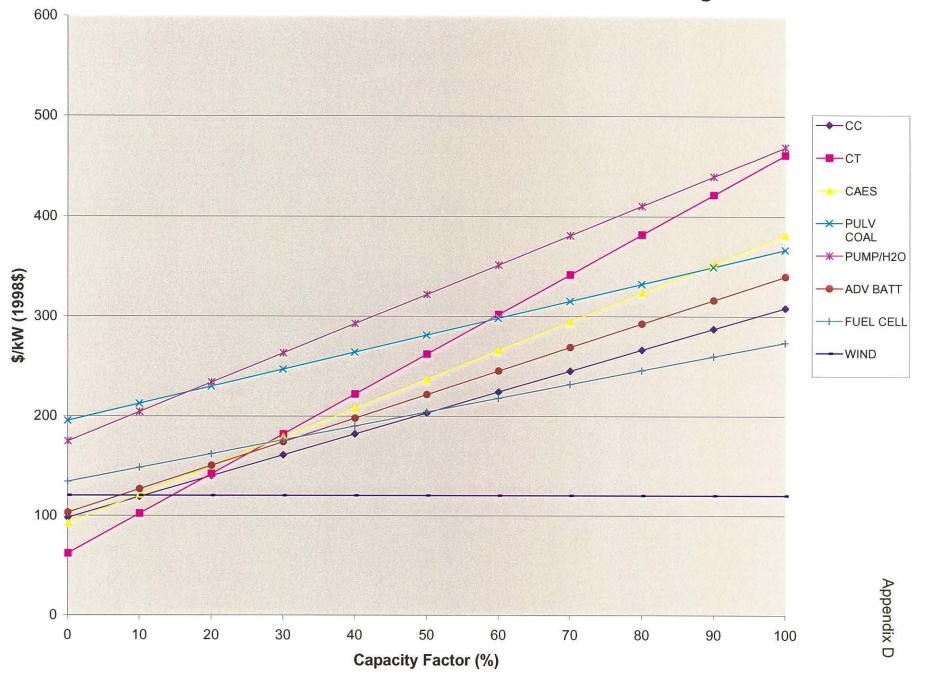
.

For planning purposes only; does not indicate a commitment to type, amount or ownership.
 Reserves = Net Resources For Load - Firm Obligations
 Capacity Margin = Reserves / Net Resources For Load * 100.
 Reserve Margin = Reserves / Firm Obligations * 100.

.'


CAROLINA POWER & LIGHT CO. June 2001 RESOURCE PLAN (Summer)

GENERATION ADDITIONS	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	2009	<u>2010</u>	2011	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>
Rowan Co. CT Richmond Co. CT Richmond Co. ST	456 620	465 160	155 160	160												
Harris NP Uprate Brunswick NP Uprate		40	50	50	43	10										
Undesignated Capacity (1)			50	50	45 155	43	155	310	310	465	310	310	310	310	310	310
INSTALLED GENERATION											·					
Combustion Turbine	3,276	3,431	3,276	2,966	2,966	2,966	2,966	2,966	2.966	2,966	2.966	2.966	2,966	2,966	2,966	2,966
Combined Cycle	84	554	1,024	1,494	1,494	1,494	1,494	1,494	1,494	1,494	1,494	1,494	1,494	1,494	1,494	1,494
Hydro	218	218	218	218	218	218	218	218	218	218	218	218	218	218	218	218
Fossil Steam	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285	5,285
Nuclear	3,174	3,214	3,264	3,314	3,357	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400
Undesignated Capacity (1)	-	-	-	-	155	155	310	620	930	1,395	1,705	2,015	2,325	2,635	2,945	3,255
PURCHASES & OTHER RESOU	RCES															
SEPA	109	109	109	109	109	109	109	109	109	109	109	109	109	109	109	109
NUG Renewable	70	68	67	67	67	22	22	22	15	6	6	6	5	5	3	3
NUG Cogeneration	263	231	68	68	68	68	-	-	-	-	-	-	-	-	-	-
Fayettevilte	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283
AEP/Rockport 2	250	250	250	250	250	250	250	250	250							
PECO Purchase (2)	300	300	300													
Broad River CT	643	794	794	794	794	794	794	794	794	794	794	794	794	794	794	794
Seasonal Purchase	170															
TOTAL SUPPLY RESOURCES	14,126	14,737	14,938	14,848	15,046	15,044	15,131	15,441	15,744	15,950	16,260	16,570	16,879	17,189	17,497	17,807
UNIT POWER SALES	456	456	456	456	456	456	456	456	456	456	456	456	456	456	456	456
NET RESOURCES FOR LOAD	13,670	14,281	14,482	14,392	14,590	14,588	14,675	14,985	15,288	15,494	15,804	16,114	16,423	16,733	17,041	17,351
PEAK DEMAND																
CP&L Retail	8,222	8,466	8.699	8.915	9,136	9,346	9,563	9,768	9,976	10,181	10,384	10.598	10.809	11.013	11,221	11.420
CP&L Wholesale	3,038	3,073	3,000	3,047	3,103	3,157	3,212	3,262	3,324	3,382	3.442	3,498	3,566	3,630	3.695	3.757
SYSTEM PEAK LOAD	11,260	11,539	11,699	11,962	12,240	12,503	12,775	13,030	13,300	13,563	13,826	14,096	14,376	14,643	14,916	15.177
Fayetteville Replacement	180	210	230	230	230	230	230	230	230	230	230	230	230	230	230	230
Firm Contract Sales	760	750	750	550	550	100	_	•					200	200	200	230
FIRM OBLIGATIONS	12,200	12,499	12,679	12,742	13,020	12,833	13,005	13,260	13,530	13,793	14.056	14,326	14,606	14.873	15,146	15.407
Large Load Curtailment	328	322	322	322	322	322	322	322	322	322	322	322	322	322	322	322
Voltage Reduction	49	50	52	53	54	56	57	59	60	61	63	64	65	66	68	69
TOTAL LOAD	12,577	12,871	13,053	13,117	13,396	13,211	13,384	13,640	13,911	14,176	14,440	14,712	14,993	15,261	15,535	15,798
RESERVES (3)	1.470	1,782	1,803	1,650	1 574	1 755	4 070	4 700	4 950	1 70.						
CAPACITY MARGIN (4)	10.8%	1,762	12.5%	1,650	1,571 10.8%	1,755 12.0%	1,670 11,4%	1,726	1,758	1,701	1,748	1,787	1,817	1,860	1,895	1,944
RESERVE MARGIN (5)	12.1%	14.3%	14.2%	13.0%	10.8%	12.0%	11.4%	11.5%	11.5%	11.0%	11.1%	11.1%	11.1%	11.1%	11.1%	11.2%
	12.170	17.070	17.670	10.070	12,170	13.7%	12.0%	13.0%	13.0%	12.3%	12.4%	12.5%	12.4%	12.5%	12.5%	12.6%


NOTES:

For planning purposes only; does not indicate a commitment to type, amount or ownership.
 For the months of June through September.
 Reserves = Net Resources For Load - Firm Obligations
 Capacity Margin = Reserves / Net Resources For Load * 100.
 Reserve Margin = Reserves / Firm Obligations * 100.

a 1

Levelized Busbar Costs of All Technologies

Levelized Busbar Costs of Lowest Cost Technologies

	Peaking Serv	Int	e Service *	Base Load Service *						
<u>Rank</u>	<u>10% Capacity Factor</u>		30% Capacity Factor		50% Capacity	Factor	60% Capacity	Factor	80% Capacity Factor	
1	СТ	11.6	CC	6.1	CC	4.6	Fuel Cell	4.1	Fuel Cell	3.5
2	CC	13.6	Fuel Cell	6.7	Fuel Cell	4.7	CC	4.3	CC	3.8
3	Wind	13.7	СТ	6.9	Pulv Coal	6.4	Pulv Coal	5.7	Pulv Coal	5.8 4.7
4	CAES	13.8	Pulv Coal	9.4	AFBC	7.8	AFBC	6.8	AFBC	5.6
5	Battery-Adv	14.4	AFBC	11.6	CGCC	8.7	CGCC	7.6	CGCC	6.1
6	Fuel Cell	16.9	CGCC	13.4	PFB	9.0	PFB	7.8	PFB	6.3
7	Pump Hydro	23.3	PFB	13.8	ALW Nuclear	11.3	ALW Nuclear	9.5	ALW Nuclear	7.3
8	Pulv Coal	24.3	ALW Nuclear	18.5	Wood	12.1	Wood	10.5	Wood	8.4
9	AFBC	30.5	Wood	18.5	Tires	20.4	Tires	17.5	MSW	13.5
10	CGCC	36.6	Tires	32.2	MSW	23.7	MSW	19.1	Tires	13.8
11	PFB	37.8	MSW	41.9						
12	Battery-LA	48.9								
13	Wood	50.8								
14	Nuclear	54.5								
15	Solar PV	72.1								
16	Tires	90.8								
17	MSW	132.8								

LEVELIŻED BUSBAR COST COMPARISON by DUTY CYCLE (1998 cents/kWh)

* Some technologies may not be suitable for this mode of operation.

14 ²

35

.