1992 Duke Power Company IRP Forecast Data

INTEGRATED RESOURCE PLANNING 1992 .FORECAST DATA

e (8

Contents

24

ŝ

And American

ľ

-

(and the second

Sect	lion	Page
Å.	Introduction Forecasting Details	5. i ii
в.	Manufacturing Economy Equations Wage Rates Employee-Hours Wages Gross Product	1 2 21 40 59
c.	Non-Manufacturing Economy Equations Wages Gross Product Employment	77 78 88 98
D.	Other Income Component Equations Contributions to Social Insurance Residence Adjustment Dividends, Interest & Rent Transfer Payments	137 138 138 138 138
Ε.	Energy & Customers General Service Industrial Residential Other Sales	139 140 160 179 184
F.	Peak Demand Equations Summer Peak Winter Peak	192 193 203

.

2

A. INTRODUCTION

This volume is a compilation of all the equations which constitute Duke's 1991 Long-Term Forecast. It is assumed that users of this document have a technical background in either econometrics or statistics.

All equations were developed using Wharton Econometric Forecasting Associates' proprietary econometric software, AREMOS. All variable names are defined immediately before or after each equation or set of equations. Several functions require further definition:

DIFF(var) The difference between the current value of a vairable and the preivous value of that variable.

DIFFYA(var) The difference between the present value of a variable and the value of the variable one year earlier.

- DLOG(var) The difference from one period ago of the log of a variable.
- var[-n] The value of the variable lagged n periods.
- LOG(var) The logarithm (base e) of the variable.

This material is a transcription of actual computer outputs from AREMOS. Most of the diagnostics are self explanatory. Expressions containing 'AR' and 'MA' terms are the Cochran-Orcutt corrections for serial correlation and moving average terms, respectively.

All equations have quarterly periodicity unless otherwise noted. The length of in put variable series and the beginning and ending dates are in the form '66 periods from 1973Q3 to 1986Q4' which means the data is from the third quarter 1973 through the 4th quarter 1986.

DPSA is the acronym for the Duke Power service area.

Forecasting Details

Service Area Economic Details--Manufacturing Sector

The structure of the manufacturing sector of the service area economic model is based on demand and supply in the labor market. The service area employee-hours equation for each Standard Industrial Classification (SIC) represents labor demand. Each SIC equation has possible explanatory variables: service area real gross regional product; service area real average hourly earnings; national real user cost of capital; and national labor Each of the explanatory variables are for the productivity. particular SIC under consideration. The statistically significant explanatory variables are the ones included in the equation. The service area average hourly earnings for each SIC represents labor supply. The possible explanatory variables for the average hourly earnings equation for a specific SIC are: the national consumer price index; the service area employee-hours for the SIC under consideration; and national labor productivity for that SIC. Again, statistically significant explanatory variables are included in a particular average hourly earnings/labor supply equation.

The next equation considered is the service area total wage equation for a particular SIC. The explanatory variables for this equation are the service area employee-hours and the service area average hourly earnings for a particular SIC. The specification of these equations is usually log-linear to capture the implied multiplication of employee-hours and average hourly earning to arrive at total wages.

The final equation considered is the service area gross regional product for a particular SIC. At this point we consider the type of industry under consideration. An industry can be either an exporter to outside of the service area or an importer. If an industry is an exporter, then the industry within the service area is producing more of its product than is being used within the

The remainder of the product is being exported to region. locations outside of the service area. A classic example of this type of industry would be the textile industry. For these types of industries the explanatory variables would be the gross product originating for the SIC at the national level, which represents the industry's exporting to regions outside of the service area, the service area total wages relative to the national total wages for the particular SIC, wage rate of the service area relative to the nation for that particular SIC, the price of electricity for Duke Power service area relative to the nation, and the price of natural gas for Duke Power service area relative to the nation. These last three variables represent the cost of doing business in the service area relative to the nation. Conversely, the industry could be an importing industry which means the industry is not producing enough of its product to support the service area's demand for its product. This lack of production implies that the service area has to import more of this product from outside of the service area to satisfy its demand for the product. An example of this type of industry within the Duke Power service area would be paper and paper products (SIC26). The explanatory variables for this type of industry would be total gross regional product for the Duke Power service area (or some other variable which measures economic activity within the service area) and the same three variables which represent the cost of doing business in the service area relative to the nation as discussed earlier. For either an exporting or importing industry the only explanatory variables included in the equation are those which are statistically significant. Projections of all national variables are provided by WEFA. Then, the projections of all service area variables are solved simultaneously.

Because of the simultaneity, or cross relationships, contained within the model the estimation procedure used in this section of the service area economic model is two-staged least squares (2SLS).

Service Area Economic Details--Non-Manufacturing Sector

The non-manufacturing sector also originates in the labor market. The service area employment for thirty-three (33) groups of nonmanufacturing SICs is the starting set of endogenous variables. The primary explanatory variable for these employment equations is at the real gross regional product one-digit either nonmanufacturing SIC, total real gross regional product for the service area, or service area real disposable income depending on the non-manufacturing sector under consideration. Supplementary explanatory variables include the national real average hourly earnings at the approximate one-digit non-manufacturing SIC level; the national real user cost of capital at the same one-digit SIC level, national labor productivity at the one-digit SIC level, and service area population. Statistically significant variables are included in the equation.

The next group of equations to consider is the service area total wage equations at the approximate one-digit non-manufacturing SIC level. The explanatory variables for these equations are the service area employment at the one-digit level and national average hourly earnings at the one-digit level. As in the manufacturing sector, the specification of these equations is log-linear to reflect the implied multiplicative operation.

The final set of equations to consider is the service area gross regional product at the one-digit non-manufacturing SIC level. The primary explanatory variable for these equations are either total national real gross product originating or service area real gross regional product depending on whether the one-digit nonmanufacturing industry is an exporter or an importer. The other explanatory variable is service area total wages for the one-digit SIC under consideration relative to national total wages for the same one-digit SIC. Only statistically significant terms are included in these equations. The projections of all national variables are provided by WEFA. Then, the projections of all

service area variables are solved simultaneously.

Service Area Economic Details--Personal Income

In order to compute total personal income for the service area the addition of the total wages is the necessary first step. Next, we need to add to these wages dividend, interest and rental income; transfer payments; and residence adjustment. Finally, we need to subtract personal contributions to social insurance. The result of these operations is total personal income.

The explanatory variable for service area dividend, interest, and rental income is the national variable measuring the same concept. The explanatory variables for service area transfer payments are national transfer payments and the service area unemployment rate relative to the national unemployment rate. The explanatory variable for the residence adjustment is total service area wages. The explanatory variables for service area personal contributions to social insurance are the personal contributions to social insurance for the nation and the service area wages relative to national wages. The projections of all national variables are provided by WEFA. Then, the projections of all service area variables are solved simultaneously.

Summary of Results from the Service Area Economic Model

The table below shows the historical and projected growth rates for certain aggregate outputs of the service area economic model.

Table of Gross Regional Product & Employment Growth Rates-Percent per Year

Sector	Indicator	78-89	89-05
Durable Goods	Employment	2.0	1.1
	Gross Product	7.7	3.2
Non-durable Goods	Employment	(0.5)	(0.2)
	Gross Product	2.9	2.6
Construction	Employment	3.4	1.6
	Gross Product	1.8	1.9
Transportation &	Employment	3.4	2.4
Utilities	Gross Product	3.9	2.9
Wholesale Trade	Employment	2.8	1.6
	Gross Product	4.1	2.4
Retail Trade	Employment	4.1	2.3
	Gross Product	3.5	2.5
Finance, Insurance	Employment	4.5	1.8
& Real Estate	Gross Product	2.2	1.8
Services	Employment	4.9	2.9
	Gross Product	4.6	2.1
Government	Employment	1.8	1.2
	Gross Product	2.5	1.9

The table below shows the same information for the four main indicators of economic growth in the service area, i.e., total real gross regional product, total real personal income, total employment, and real price of electricity.

Page vi

Table of Service Area Economic Indicators Growth Rates-Percent per Year

Indicator	78-89	89-05
Total Employment	2.5	1.8
Total Real Personal Income	4.0	2.9
Total Real Gross Regional Product	3.9	2.5
Real Price of Electricity	1.8	-0.6

These outputs of the service area economic model serve as primary inputs to the peak and energy models.

Peak Demand and Energy Model-Introduction

It is assumed by Duke Power Company that electricity demand and energy in the industrial and general service sector is a derived demand based on the traditional production function from basic economic theory. That is, electricity usage, either peak demand or energy, is a basic input to the production process of industries and the desired usage, or derived demand, of electricity within the industrial or general service sector is based on the production levels within that particular sector. Thus, within these two sectors electrical usage would primarily depend on a variable that represents the production levels, e.g., gross regional product, etc.

For the residential sector electricity usage is based on the theory of consumer demand where electricity is but one good which consumers choose from all possible goods and services available to the consumer. Therefore, from consumer demand theory the level of consumption depends on the level of income. So, the primary variable within the residential energy or demand sector would be real personal income.

Peak Demand Model Details

To better understand the system peak demand and to better align our econometric and end-use efforts a new approach was used in the 1991 Duke Power Forecast. Both the summer and winter peak model are split into equations for the different customer classes, i.e., residential, general service, textiles, industrial excluding textiles, the four municipal and cooperative participants of the Catawba sale, the municipal and cooperative non-participants of Catawba, traffic signals and outdoor lighting. The dependent variable is data from load research customer demand study of retail customers. This data consists of readings of the system demand by customer classes for the day of system peak and the days of the various class peak.

The equations for each class is obtained by ordinary least squares, some of which are corrected for serial correlation, with the demand at customer meter as the dependent variable. The demand readings from the load research study for the hours of 2 pm to 7 pm are used in the dependent variable for each customer class equation within the summer peak demand model. Also, the demand readings from the same study for the hours of 7 am to 10 am are used in the dependent variable for each customer class equation within the winter peak While using the appropriate independent variables, demand model. to be discussed later, a forecast of the various customer classes is produced at the customer meter. Then, a projected loss factor of the customer classes is applied to the projected customer class demand to arrive at the customer demand forecast at generation. The sum of the customer class demands at generation is the system peak demand for the particular season being analyzed.

The summer residential demand equation, specifically, has residential megawatts per customer as the dependent variable. The independent variables for the residential demand equation include the minimum morning temperature, the real price of electricity for the residential class, and the residential air conditioning saturation multiplied by the temperature at the time of the corresponding megawatt/dependent variable.

The general service demand equation also has megawatts per customer as the dependent variable. The independent variables for the general service demand equation include the temperature at the time of the megawatt reading, the minimum morning temperature on the day under analysis, the real gross regional product for the nonmanufacturing industries, and the real price of electricity for the general service class.

The summer textile demand equation has megawatts as the dependent variable. The independent variables for the textile demand equation include the real gross regional product for the textile industry, the temperature for the hour of the megawatt reading, and the minimum morning temperature for the day of the megawatt reading.

The industrial excluding textile summer demand model has megawatts as the dependent variable. The independent variables for this model include the real gross regional product for manufacturing excluding the textile industry, the real price of natural gas, and the real price of electricity for this class of customers.

The other equations for the summer peak demand model, i.e., Catawba participants, non-participants of Catawba, etc., have megawatts as the dependent variable. The independent variables for these equations include the minimum morning temperature for the day of the megawatt reading, real gross regional product, the temperature for the hour of the megawatt reading, and real disposable personal income.

The residential equation of the winter peak demand model has megawatts per customer as the dependent variable. The independent variables for the residential equation include residential electric water heating saturation, the residential saturation of heat pumps, the temperature at 4 pm for the day before the particular megawatt reading, and the temperature at the hour of the megawatt reading.

There are two equations for the general service part of the winter The first equation has all electric general peak demand model. service total megawatts as the dependent variable. The independent variables for this equation include real gross regional product for the non-manufacturing sector, the real price of electricity for all electric customers in the general service class, and the real price of natural gas for commercial customers. The second equation has general service excluding all electric megawatts per customer as The independent variables the dependent variable. for this include real gross regional product for the nonequation manufacturing sector.

The textile equation for the winter peak demand model has total megawatts as the dependent variable. The independent variables for this equation include real gross regional product for the textile industry.

The industrial equation excluding textiles has total megawatts as the dependent variable. The independent variables include real gross regional product for the manufacturing sector excluding textiles.

The other equations for the winter peak demand model, i.e., Catawba participants, non-participants of Catawba, etc., have megawatts as the dependent variable. The independent variables for these equations include the minimum morning temperature for the day of the megawatt reading, real gross regional product, the temperature for the hour of the megawatt reading, and real disposable personal income.

In order to arrive at projections of the summer and winter peak demand models, the projections of service area economic variables are from the service area economic model; the projections of national economic variables are supplied by WEFA; the projections of the price of electricity is supplied by the corporate financial model; the customer projections by class are supplied by the corresponding energy model; and the heating and cooling degree hours are projected by a thirty year historical average of these temperature measurements.

Residential Energy Model Details

The residential energy forecast is the sum of the products of number of customers forecast times average consumption per customer forecast for the two major divisions in the residential class: electric heating customers and non-electric heating customers. The explanatory variables for the total number of residential customers are service area population, real interest rates, and real disposable service area income. The equation for the electric heating customers has as its explanatory variables total residential customers and the real price of natural gas in the service area. The non-electric heating customer projection is the difference between the total customer projection and the electric heating customer projection.

The electric heating kilowatt hour per customer (KPC) equation has as it explanatory variables heating degree hours, cooling degree hours multiplied by the air conditioning saturation of electric heating customers, the real price of electricity for electric heating customers, and a decreasing trend variable starting in 1975 multiplied by heating degree hours. The non-electric KPC equation has heating degree hours multiplied by the saturation of electric water heating of non-electric heating customers, cooling degree hours multiplied by the air conditioning saturation of non-electric heating customers, and the real price of electricity for nonelectricity for non-electric heating customers.

In order to project customers and KPC the projections of service area economic variables are from the service area economic model;

the projections of national economic variables are supplied by WEFA; the price of electricity is supplied by the corporate financial model; and the heating and cooling degree hours are projected by a thirty year historical average of these temperature measurements.

General Service Energy Model

To better understand our commercial class and to better align our econometric and end-use efforts a new approach was used in the 1991 Duke Power forecast for the general service energy model. This approach is based on using SIC codes to group energy sales into 12 different groups or commercial types. These groups are offices, trade, transportation, retail education, wholesale trade, restaurants, food stores, hotels, churches, amusement centers, medical services, and miscellaneous commercial. An equation with megawatt-hour sales as the dependent variable was developed for each commercial type.

The independent variables used for the above equations include real service area income, service area population, real gross regional product by commercial type, the real price of electricity by commercial type, the real price of natural gas, the prime interest rate, non-manufacturing employment by commercial type, and heating and cooling degree hours. Of these, the variables with the most impact are real service area income, real gross regional product, degree hours, the real price of electricity, and population.

However, numbers of customers were still forecasted for total electric heating, non-electric heating, and building construction categories. The customer forecasts were done because of interest in these variables. The independent variables in these equations include real gross regional product for the non-manufacturing sector, service area population, the prime interest rate, the real price of natural gas, and service area construction employment.

Integrated Resource Planning

In order to project customers and megawatt-hours for this model the projections of service area economic variables are from the service area economic model; the projections of national economic variables are supplied by WEFA; the price of electricity is supplied by the corporate financial model; and the heating and cooling degree hours are projected by a thirty year historical average of these temperature measurements.

Industrial Energy Model

Industrial energy is projected for every two digit manufacturing SIC. Doing the projections separately allows each manufacturing industry to be analyzed completely. The industrial energy equations have as their primary explanatory variable the service area gross regional product for the particular SIC under Other variables used to explain the industrial consideration. energy sector include the real price of electricity, the real price of natural gas, and heating and cooling degree hours. Only the statistically significant variables are included in the equation under consideration.

In order to project industrial sales for a particular SIC, the projections for any national variable are supplied by WEFA; the projections of any service area economic variable are supplied from the service area economic model; and the heating and cooling degree hours are projected by a thirty year average of these temperature measurements.

Methodology Discussion

The general approach selected by Duke Power Company is to model peak demand and energy separately as opposed to modelling energy and load factor. Under the latter process the peak demand forecast is the multiplication of the energy and load factor. Duke Power Company selected its process over the energy/load factor approach for a variety of reasons, which are as follows. Since the load factor is energy divided by the peak demand multiplied by 8,760 (the number of hours in a year), this alternative process restricts the peak demand to have the same variables as inputs as in the energy equations when energy is multiplied through the load factor equation. Actually, the peak equation would be just a multiple of the energy equation under this alternative approach. Thus, the alternative approach implies that the one hour of peak demand for any year would be very similar to all 8,760 hours of demand for the year, and this implication may not be reasonable for all years. Duke contends that there is an uniqueness about the peak hour that causes it to be modelled independently. For example, Duke Power has found that the temperature responsiveness of the peak demand hour is vastly different than the average hour of a particular year. Also, the responsiveness of the peak demand hour to price is less than it is for energy. This appears to be reasonable since, at extreme temperatures for one hour, individuals would be less concerned with the price of electricity and more concerned with comfort.

Another reason to model peak demand and energy separately is consistency with econometric/economic theory. It is assumed by Duke Power Company that electricity demand or energy in the general service and industrial sectors is a derived demand based on the traditional production function from basic economic theory. That is, electricity usage, either peak demand or energy, is a basic input to the production process of industries and the desired usage, or derived demand, of electricity within the industrial and general service sectors is based on the production levels within In the residential sector electricity that particular section. usage is based on consumer demand theory where electricity is but one good which consumers choose from all possible goods and services available to the consumer. Thus, for all three customer demanding measurable units of classes the customers are electricity, e.g., megawatts or megawatt-hours, and the demand for units can be easily represented in an econometric these relationship consistent with either derived or consumer demand theory. But, the load factor is a value that cannot be explained by either derived or consumer demand theory. The load factor is a percentage measurement and is not considered to be a measurement that is demanded by any customer class. Therefore, the econometric representation of the load factor is highly uncertain and suspect in regards to derived and consumer demand theory.

However, there is a link between the peak demand and energy models because most of the same independent variables are used in both the peak demand and energy models. Actually, there is little practical difference between modelling energy and load factor or energy and peak demand if the same independent variables are used within each set of modelling processes. Duke prefers the approach of allowing the relationships between the peak demand and energy with the independent variables to have full flexibility. This would provide direct statements about such things as the elasticities on peak demand. Duke does evaluate the load factor calculation to determine how reliable the peak demand and energy forecasts.

B: MANUFACTURING WAGE EQUATIONS

Wage Rates Employee-Hours Wages Gross Product

ĺ

MANUFACTURING WAGE RATES

FOOD PRODUCTS

WR20.TWO Joint Two Stage Least Squares QUARTERLY data for 54 periods from 1976Q3 to 1989Q4 Date: 2 FEB 1991

log(xwr20)

= 0.20930 * log(lp20155)
 (6.37822)
- 0.32502 * log(.3*(em20h.16+em20h.18)+.4*em20h.17)
 (6.68329)

+ 0.91253 * log(pciu) + 1.41646 (69.5118) (2.35907)

Sum Sg	0.0064	Std Err	0.0113	LHS Mean	1.7427
R Sq	0.9975	R Bar Sq	0.9974	F 3,50	6735.98
D.W.(1)	0.9261	D.W.(4)	1.8527	•	

xwr20	=	average hourly earnings, food products, DPSA.
lp20155		labor productivity, food products, pdl starting at lag 15
		with a length of 5 with even tails, US.
em20h	=	employee-hours, food products, DPSA.
pciu	-	consumer price index, urban consumers, US.

TOBACCO PRODUCTS

MFG91:WR21.TWO Joint Two Stage Least Squares QUARTERLY data for 80 periods from 1970Q1 to 1989Q4 Date: 26 DEC 1990

log(xwr21)

> $= -0.56254 * \log(em21h) + 0.93410 * \log(ahemfn21$) + 7.86213$ (4.04495) (101.773) (4.11419)

Sum Sq	0.0631	Std Err	0.0286	LHS Mean	2.0171
RSq	0.9971	R Bar Sq	0.9970	F 2,77	13138.5
D.W.(1)	1.1557	D.W.(4)	1.7524		

xwr21	=	average hourly earnings, tobacco products, D)PSA.
em21h	=	employee-hours, tobacco products, DPSA.	
ahemfn21\$	-	average hourly earnings, tobacco products, D	PSA.

TEXTILE MILL PRODUCTS

MFG91:WR22.TWO Joint Two Stage Least Squares QUARTERLY data for 82 periods from 1969Q3 to 1989Q4 Date: 31 DEC 1990

log(xwr22)

=	- 0.0957 (2.6538)	1 * log(em2: 6)	2h) + 0.90 (33.3	0717 * log(3702)	xwr23)
	+ 0.1650 (6.2162)	5 * log(lp2: 0)	2.2) + 1.4 (2.4	43664 43391)	
Sum Sq	0.0213	Std Err	0.0165	LHS Mean	1.5033
R Sq D.W.(1)	0.9983 0.4940	R Bar Sq D.W.(4)	0.9982 1.0071	F 3, 78	15246.8

xwr22	=	average hourly earnings, textile mill products, DPSA.
em22h	=	employee-hours, textile mill products, DPSA.
xwr23	=	average hourly earnings, apparel products, DPSA.
1p22	=	labor productivity, textile products, DPSA.

MFG91:WR23.TWO Joint Two Stage Least Squares QUARTERLY data for 51 periods from 1977Q2 to 1989Q4 Date: 31 DEC 1990

log(xwr23)

= $1.05667 * \log(ahemfn23) - 0.05891 * \log(em23h.3) + 0.66160$ (137.975) (2.18648)(1.67499)0.0039 Std Err 0.0090 LHS Mean 1.5285 Sum Sq 0.9974 R Sq 0.9975 R Bar Sq F 2, 48 9561.61 D.W.(1)0.4011 D.W.(4) 1.5247

XWR23 = exp(??)

LUMBER AND WOOD PRODUCTS

MFG91:WR24.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 31 DEC 1990

D.W.(4)

log(xwr24)

D.W.(1)

0.3417

- 0.08659 * log(.2*(em24h.15+em24h.18)+.3*(em24h.16+em24h.17)) = (5.36217)+ 0.82809 * log(xwr25) + 0.23037 * log(pciu) + 0.40777(25.8135)(6.27524)(2.49443)LHS Mean 0.0024 Std Err 0.0072 1.7586 Sum Sq F 3, 46 13539.9 R Sq 0.9989 R Bar Sq 0.9988

xwr24	=	average hourly earnings, lumber and wood products, DPSA.
em24h		employee-hours, lumber and wood products, DPSA.
xwr25	=	average hourly earnings, furniture and fixtures, DPSA.
pciu	=	consumer price index, urban consumers, DPSA.

1.8587

FURNITURE AND FIXTURES

MFG91:WR25.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 31 DEC 1990

log(xwr25)

=

ł

Separation of Sec.

0.95499 * log(xwr24) - 0.01453 * log(em25h) (84.9519) (0.72237)

+ 0.16046 * log(lp25) - 0.20709 (4.14287) (0.76538)

Sum Sq	0.0034	Std Err	0.0086	LHS Mean	1.7615
R'Sq	0.9984	R Bar Sq	0.9983	F 3,46	9636.15
D.W.(1)	0.3002	D.W.(4)	0.9870		

xwr25	=	average hourly earnings, furniture and fixtures, DPSA.
xwr24	=	average hourly earnings, lumber and wood products, DPSA.
em25h	=	employee-hours, furniture and fixtures, DPSA.
1p25	=	labor productivity, furniture and fixtures, US.

,

PAPER AND PAPER PRODUCTS

WR26.TWO Joint Two Stage Least Squares QUARTERLY data for 53 periods from 1976Q4 to 1989Q4 Date: 2 FEB 1991

xwr26

= 1.03644 * ahemfn26\$ - 0.09867 (112.282) (1.11458)

Sum Sq	0.9482	Std Err	0.1364	LHS Mean	9.6164
RSq	0.9960	R Bar Sq	0.9959	F 1, 51	12607.3
D.W.(1)	0.2769	D.W.(4)	0.8005		

xwr26 = average hourly earnings, paper and paper products, DPSA. ahemfn26\$ = average hourly earnings, paper and paper products, DPSA.

PRINTING AND PUBLISHING

MFG91:WR27 Cochran-Orcutt QUARTERLY data for 71 periods from 1972Q2 to 1989Q4 Date: 2 JAN 1991 log(xwr27)0.36365 * log(pciu34) + 0.49356 * log(ahemfn27\$) = (2.83398) (2.91492)+ 0.29562 + log(lp2743) - 1.89465(7.78538)(8.89949)Sum Sq 0.0031 Std Err 0.0069 LHS Mean 1.7922 0.9996 R Bar Sq 0.9996 F 4,66 42802.4 R Sq 2.1330 D.W.(4) 2.1108 D.W.(1) $AR 0 = + 0.67155 * AR_1$ (7.34883)average hourly earnings, printing and publishing, DPSA. xwr27 = consumer price index, urban consumers, pdl starting at lag pciu34 =3 and a length of 4 with even tails, US.

ahemfn27\$ = average hourly earnings, print and publishing, US. lp27 = labor productivity, printing and publishing, pdl starting at lag 4 and a length of 3 with even tails.

CHEMICAL AND ALLIED PRODUCTS

MFG91:WR28.TWO Joint Two Stage Least Squares QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 31 DEC 1990

log(xwr28)

 $= -0.36561 * \log(em28h) + 0.37556 * \log(lp28) \\ (5.98910) (9.5147)$

+ 0.95486 * log(pciu) + 1.52731 (56.4122) (1.93232)

Sum Sq	0.0259	Std Err	0.0195	LHS Mean	1.9559
RSq	0.9976	R Bar Sq	0.9975	F 3,68	9455.99
D.W.(1)	0.7854	D.W.(4)	1.7180		

xwr28 = average hourly earnings, chemical and allied products, DPSA. em28h = employee-hours, chemical and allied products, DPSA. lp28 = labor productivity, chemical and allied products, US. pciu = consumer price index, urban consumers, US. ſ

PETROLEUM PRODUCTS & HIDES, SKINS, AND LEATHER

MFG91:WR2931 Cochran-Orcutt QUARTERLY data for 83 periods from 1969Q2 to 1989Q4 Date: 2 JAN 1991 log(xwr2931) $1.14432 * \log(ahemfn2931) + 0.04871 * \log(lp2931)$ = (1.52043)(56.8652)- 0.00693 * log(em2931h) - 0.31058 (0.70754)(1.94587)Std Err LHS Mean Sum Sq 0.0060 0.0088 1.5623 F 4, 78 47684.7 0.9996 R Bar Sq 0.9996 R Sq D.W.(1) 1.9792 D.W.(4) 1.7857 AR 0 = + 0.80529 * AR 1(10.7856)xwr2931 average hourly earnings, petroleum products & hides, skins, = and leather, DPSA. average hourly earnings, petroleum products & hides, skins, ahemen2931= and leather, US. 1p2931 labor productivity, petroleum products & hides, skins, and ----leather, US. employee-hours, petroleum products & hides, skins, and em2931h = leather, DPSA.

RUBBER AND PLASTIC PRODUCTS

MFG91:WR30.TWO Joint Two Stage Least Squares QUARTERLY data for 57 periods from 1975Q4 to 1989Q4 Date: 31 DEC 1990

xwr30

= 0.08938 * pciu + 0.04039 * 1p30 (18.0446) (4.54778)

- 0.00000 * .2*(em30h.5+em30h.8)+.3*(em30h.6+em30h.7) - (2.99726)

1.45483 (10.5712)

Sum Sq	0.7962	Std Err	0.1226	LHS Mean	7.0324
R Sq	0.9959	R Bar Sq	0.9956	F 3,53	4272.97
D.W.(1)	0.3781	D.W.(4)	1.4958		

xwr30	_	average hourly earnings, rubber and plastic products, DPSA.
pciu	=	consumer price index, urban consumers, US.
lp30	#	labor productivity, rubber and plastic products, US.
em30h	=	employee-hours, rubber and products, DPSA.

STONE , CLAY, AND GLASS PRODUCTS

MFG91:WR32.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 3 JAN 1991 Date: log(xwr32) = 0.95586 * log(pciu)(57.7695)- 0.20575 * log(.2*(em32h.3+em32h.6)+.3*(em32h.4+em32h.5)) (4.93078)+ 0.38632 * log(.2*(lp32.4+lp32.7)+.3*(lp32.5+lp32.6)) - (6.45360) 0.97092 (2.25407)Sum Sq 0.0118 Std Err 0.0160 LHS Mean 1.9795 3, 46 2966.97 R Sq 0.9949 R Bar Sq 0.9945 F D.W.(1)0.4302 D.W.(4)2.0213 average hourly earnings, stone, clay and glass products, xwr32= DPSA. consumer price index, urban consumers, US. pciu = employee-hours, stone, clay and glass products, DPSA. em32h = lp32 = labor productivity, stone, clay and glass products, US.

PRIMARY METAL PRODUCTS

MFG91:WR33 Cochran-Orcutt QUARTERLY data for 54 periods from 1976Q3 to 1989Q4 Date: 31 DEC 1990 log(xwr33) $1.00243 * \log(xwr34) + 0.13916 * \log(pciu88)$ = (21.2255)(3.54188)- 0.07666 * log(em33h.10) + 0.41300 (4.26792)(2.30116)0.0108 Sum Sq 0.0054 Std Err LHS Mean 1.9719 0.9981 F 7, 46 3877.53 R Sq 0.9983 R Bar Sq 2.0728 D.W.(1) 1.8708 D.W.(4) $AR_0 = + 0.57254 * AR_1 - 0.41119 * AR_4 + 0.24296 * AR_7$ (3.62298) (5.41728) (1.82956) - 0.40728 * AR_8 (2.81354)

xwr33	=	average hourly earnings, primary metal products, DPSA.
xwr34	=	average hourly earnings, fabricated metal products, DPSA.
pciu88	=	consumer price index, urban consumers, pdl starting at lag
		8 with a length of 8 and even tails, US.
em33h	=	employee-hours, primary metal products, DPSA.

Integrated Resource Planning

Page 14

FABRICATED METAL PRODUCTS

MFG91:WR34 Cochran-Orcutt QUARTERLY data for 67 periods from 1973Q2 to 1989Q4 Date: 3 JAN 1991
log(xwr34)
= 0.33582 * log(pciu.1) + 0.59083 * log(xwr33.1) (4.35963) (8.79952)
- 0.06906 * log(em34h) + 0.05466 * log(lp34) (3.76500) (1.53828)
Sum Sq 0.0051 Std Err 0.0092 LHS Mean 1.8109 R Sq 0.9992 R Bar Sq 0.9991 F 6, 60 12125.4 D.W.(1) 2.0096 D.W.(4) 2.3657
$AR_0 = + 0.79827 * AR_1 - 0.20482 * AR_2 - 0.00311 * AR_4 (6.29278) (1.53526) (0.03355)$
xwr34 = average hourly earnings, fabricated metal products, DPSA.
pciu = consumer price index, urban consumers, US.
xwr33 = average hourly earnings, primary metal products, DPSA.
em34h = employee-hours, fabricated metal products, DPSA.
<pre>lp34 = labor productivity, fabricated metal products, US.</pre>

-

Warner work

4444 - 17 STOY

Alexandra States

for a start of the start of the

NON-ELECTRICAL MACHINERY

MFG91:WR35.TWO Joint Two Stage Least Squares QUARTERLY data for 68 periods from 1973Q1 to 1989Q4 Date: 3 JAN 1991

xwr35

=	0.08497 * (50.5285)	pciu - 0.0 (3.4	0466 * 1) 3870)	p3574	
	- 0.00000 * (2.64591)	.3*(em35h.	1+em35h.	3)+.4*em35h	.2 + 0.20474 (1.39049)
Sum Sq R Sq D.W.(1)	0.6569 0.9976 0.2590	Std Err R Bar Sq D.W.(4)	0.1013 0.9975 1.5727	LHS Mean F 3, 64	6.5066 8973.97

xwr35	=	average hourly earnings, non-electrical machinery, DPSA.
pciu	=	consumer price index, urban consumers, US.
lp3574	=	labor productivity, non-electrical machinery, pdl starting at lag of 7 with length 4 and even tails, US.
em35h	-	employee-hours, non-electrical machinery, DPSA.

ELECTRICAL MACHINERY

WR36.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991

log(xwr36)

= 0.66610 * log(pciu) + 0.44741 * log(ahemfd36\$) (5.03231) (3.46080)

- 0.03192 * log(em36h.5) - 1.55069 (1.13920) (4.11250)

Sum Sq0.0193Std Err0.0181LHS Mean1.8310R Sq0.9970R Bar Sq0.9968F 3, 596525.83D.W.(1)0.2401D.W.(4)1.3051

xwr36 = average hourly earnings, electrical machinery, DPSA. pciu = consumer price index, urban consumers, US. ahemfd36\$ = average hourly earnings, electrical machinery, US. em36h = employee-hours, electrical machinery, DPSA.

TRANSPORTATION EQUIPMENT

WR37.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991

log(xwr37)

 $1.03191 * \log(pciu.1) + 0.09846 * \log(1p37.1) - 3.08410$ = (42.8758)(133.237) (4.36335) 0.0141 Std Err 0.0153 LHS Mean 1.8521 Sum Sq 12997.8 0.9976 F 2,60 R Sq 0.9977 R Bar Sq D.W.(1) 0.3720 D.W.(4) 1.0748

xwr37	=	average hourly earnings, transportation equipment, DPSA.
pciu 👘	=	consumer price index, urban consumers, US.
1p37	=	labor productivity, transportation equipment, US.
INSTRUMENTS

.

·

					INSTROM			
	MFG91:WR3 Cochran-O QUARTERLY Date: 3	8 rcutt data JAN 19	for 56 991	periods	from 197	6Q1 to 19	39Q4	
and the second	xwr38							
-	=	- 0.0 (2.7)0000 * 72758)	.2*(em38	3h.12+em3	8h.15)+.3	*(em38h.13+en	138h.14)
a service and the service and		+ 0.0 (2.9)3680 *)4297)	lp38 + ((2).07755 * 20.8806)	pciu[-1]	- 0.94361 (1.81719)	
	Sum Sq R Sq D.W.(1)	0.74 0.99 2.23	19 St 50 R 345 D.	d Err Bar Sq W.(4)	0.1206 0.9946 1.7475	LHS Mean F 4, 5	n 6.2122 L 2547.66	
A second se	AR_0 = +	0.722	284 * AF 101)	<u>1</u>				
	xwr38 em38h 1p38 pciu		average employe labor p consume	e hourly e-hours, productiver er price	earnings , instrum /ity, ins index, u	, instrume ents, DPS2 truments, rban consu	ents, DPSA. A. US. imers, US.	
and the second s		·						
							· · · ·	
· .								
And a second sec								
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
and the second s							•	
1	almost the state of the state of the state of the		terre and the second states are set.		Sector and the sector products of the	and any state of the strength of the state of the		ang panganan sa

•

•

MISCELLANEOUS PRODUCTS

MFG91:WR39 Cochran-Orcutt QUARTERLY data for 84 periods from 1969Q1 to 1989Q4 Date: 3 JAN 1991 log(xwr39)

0.35589 * log(pciu) + 0.73199 * log(ahemfd39\$) - 1.09599 = (5.48649)(5.04459) (9.6133) 0.0012 Std Err 0.0038 LHS Mean 1.5834 Sum Sq R Sq 0.9999 R Bar Sq 0.9999 F 3,80 NC D.W.(4) 2.0001 1.9552 D.W.(1) $AR_0 = + 0.93372 * AR_1$ (17.3813)

xwr39	=	average hourly	earnings, miscellaneous	products,	DPSA.
pciu	=	consumer price	index, urban consumers,	US.	
ahemfd39\$	=	average hourly	earnings, miscellaneous	products,	US.

MANUFACTURING EMPLOYEE-HOURS

SIC20-FOOD PRODUCTS

SIMMFG91:EM20H.TWO Joint Two Stage Least Squares QUARTERLY data for 54 periods from 1976Q3 to 1989Q4 Date: 2 FEB 1991

log(em20h)

0.42638 * log(grp20dp/(pgpo20/100)) + 8.11178 = (29.3283)(21.3035)0.0329 0.0252 LHS Mean 14.0035 Std Err Sum Sq 0.8954 F 1, 52 454.735 0.8974 R Bar Sq R Sq D.W.(4) 2.0485 D.W.(1) 0.6561

em20h	=	employee-hours, food products, DPSA.	
grp20dp	=	gross regional product, food products, DPS	Α.
pgpo20	=	gross product deflator, food products, US.	

SIC21-TOBACCO PRODUCTS

EM21H.TWO Joint Two Stage Least Squares QUARTERLY data for 80 periods from 1970Q1 to 1989Q4 Date: 26 DEC 1990

log(em21h)

= 0.11816 * log(rucke2114) + 0.36189 * log(grp21dp/(pgpo21/100)) (3.74361) (5.04147)

- 0.04801 * log(xwr21/(ppi/100)) + 7.98501 (1.52133) (6.90659)

Sum Sq	0.0974	Std Err	0.0358	LHS Mean	13.6422
R Sq -	0.5084	R Bar Sq	0.4890	F 3,76	26.1948
D.W.(1)	1.5993	D.W.(4)	2.1596		

em21h	=	employee-hours, tobacco products, DPSA.
rucke2114		real user cost of capital, tobacco products, pdl
		starting at lag 1 with a length of four with head
		constraints, US.
grp21dp	=	gross regional product, tobacco products, DPSA.
pgpo21	-	gross product deflator, tobacco products, US.
xwr21	=	average hourly earnings, tobacco products, DPSA.
ppi	=	total producer price index, US.

SIC22-TEXTILE PRODUCTS

EM22H.TWO Joint Two Stage Least Squares QUARTERLY data for 82 periods from 1969Q3 to 1989Q4 Date: 31 DEC 1990 log(em22h)0.90875 * log(grp22dp/(pgpo22/100)) (10.4595)- 0.04098 * log(ucke22.1/(ppitpa.1/100)) - 0.92010 *log(lp22) (14.8766)(1.49847)+ 5.26707(4.37599)Sum Sq LHS Mean 0.1357 Std Err 0.0417 16.2680 295.049 0.9190 R Bar Sq 0.9159 F 3, 78 R Sq D.W.(1) 0.7912 D.W.(4) 1.9598 em22h employee-hours, textile products, DPSA. = gross regional prodcut, testile products, DPSA. grp22dp = gross product deflator, textile products, US. pgpo22 = user cost of capital, textile products, US. producer price index, textile and apparel products, US. ucke22 = ppitpa ----

labor productivity, textile products, DPSA.

1p22

=

SIC23-APPAREL AND APPAREL PRODUCTS

EM23H.TWO Joint Two Stage Least Squares QUARTERLY data for 51 periods from 1977Q2 to 1989Q4 Date: 31 DEC 1990

em23h

= 1.21955 * grp23dp/(pgpo23/100) (4.18202)

-634901*.2*((xwr23.5/(ppitpa.5/100))+(xwr23.8/(ppitpa.8/100)))+(7.88400)

.3*((xwr23.6/(ppitpa.6/100))+(xwr23.7/(ppitpa.7/100)))

+ 5698.16 * rpucke2393 + 3473808 (6.39098) (18.0855)

Sum Sq	2E+11	Std Err	71409.7	LHS Mean	2400751
R Sq	0.6275	R Bar Sq	0.6037	F 3,47	26.3932
D.W.(1)	1.1837	D.W.(4)	1.8423		

em23h employee-hours, apparel and apparel products, DPSA. = gross regional product, apparel and apparel products, DPSA. grp23dp = pqpo23 = gross product deflator, apparel and apparel products, US. xwr23 = average hourly earnings, apparel and apparel products, DPSA. ppitpa producer price index, textile and apparel products, US. = real user cost of capital, apparel and apparel products, rpucke23 = US.

SIC24-LUMBER AND WOOD PRODUCTS

	EM24H.TWO Joint Two Stage Lea QUARTERLY data for Date: 31 DEC 1990	st Squares 50 periods from 1977Q3 to 1989Q4
	log(em24h)	
	= 0.48966 * (7.10082)	log(grp24dp/(pgpo24/100))
	+ 0.25144 * (6.33103)	log(rpucke24133)
	- 0.11585 * (1.47703)	log(xwr24.1/(ppilwp.1/100))
	- 0.27907 * (1.9744	log(lp24.5) 6)
10000 august 1000 august 10	+ 7.00754 (9.9916)	
Version Community	Sum Sq 0.0870 R Sq 0.8949 D.W.(1) 1.0987	Std Err 0.0440 LHS Mean 13.5218 R Bar Sq 0.8855 F 4, 45 95.7796 D.W.(4) 2.4183
Annous a second second second	em24h = grp24dp =	employee-hours, lumber and wood products, DPSA. gross regional product, lumber and wood products, DPSA.
descension a source of Adding	pgpo24 = rpucke24133 =	gross product deflator, lumber and wood product, US. real user cost of capital, lumber and wood products, pdl starting at lag 13 with a length of 3 with even tails
and the second second	xwr24 =	average hourly earnings, lumber and wood products, DPSA.
**	ppilwp = 1p24 =	producer price index, lumber and wood products, US. labor productivity, lumber and wod products, US.

SIC25-FURNITURE AND FIXTURES

EM25H.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 31 DEC 1990 log(em25h) 0.95432 * log(grp25dp/(pgpo25/100)) - 0.36998 * log(lp25) (9.45117)(1.93641)3 4 3 5 n 7 log(.2*((xwr25.10/(ppifhe.10/100))+(xwr25.13/(ppifhe.13/ 100)))+.3*((xwr25.11/(ppifhe.11/100))+(xwr25.12/(ppifhe.12/100)))) (4.76888)+ 4.03608(4.07593) Sum Sq 0.0625 Std Err 0.0369 LHS Mean 14.8822 0.7534 R Bar Sq 0.7373 F 3, 46 46.8382 R Sq D.W.(1)1.0587 D.W.(4)1.5928 em25h employee-hours, furniture and fixtures, DPSA. = gross regional product, furniture and fixtures, DPSA. grp25dp pgpo25 = gross product deflator, furniture and fixtures, US. _ labor productivity, furniture and fixtures, US. 1p25

xwr25 = average hourly earnings, furniture and fixtures, DPSA.
ppifhe = producer price index, furniture and household durables, US.

SIC26-PAPER AND PAPER PRODUCTS

SIMMFG91:EM26H.TWO Joint Two Stage Least Squares QUARTERLY data for 53 periods from 1976Q4 to 1989Q4 Date: 2 FEB 1991

log(em26h)

=	0.56698 * (5.70465)	<pre>log(grp26dp/(pgpo26/100))</pre>	- 0.31100 * (2.26733)	log(lp26)
	+ 6.89591 (7.98806)			

sum sq	0.0183	Std Err	0.0191	LHS Mean	13.5230
R Sq -	0.9018	R Bar Sq	0.8979	F 2,50	229.626
D.W.(1)	1.5815	D.W.(4)	1.6500		

em26h	=	employee-hours, paper and paper products, DPSA.
grp26dp	=	gross regional product, paper and paper products, DPSA.
pgpo26	=	gross product deflator, paper and paper products, US.
1p26	=	labor productivity, paper and paper products, US.

SIC27-PRINTING AND PUBLISHING

MFG91:EM27H Nonlinear Least Squares QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 2 JAN 1991

log(em27h)

=	0.88822 *	log(grp27dp/(pgpo27/100))	+ 0.22899 *	log(rpucke27)
	(35.0162)	.	(5.34871)	

+ 0.95887 (3.48761)

LHS Mean Sum Sq 0.0510 Std Err 0.0274 13.5006 0.9850 R Bar Sq 0.9844 F 3,68 1491.95 R Sq 1.5880 D.W.(4)1.6781 D.W.(1)

 $\frac{MA_0}{(7.00221)} = + 0.65212 * MA_1$

em27h = employee-hours, printing and publishing, DPSA.
grp27dp = gross regional product, printing and publishing, DPSA.
pgpo27 = gross product deflator, printing and publishing, US.
rpucke27 = real user cost of capital, printing and publishing, US

SIC28-CHEMICAL AND ALLIED PRODUCTS

MFG91:EM28H.TWO Joint Two Stage Least Squares QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 31 DEC 1990

em28h

= 1.20966 * grp28dp/(pgpo28/100) - 28795.4 * xwr28/(ppicap/100) (7.64367) (3.04856)

- 41335.1 * lp28 + 1712896 (6.18521) (17.2602)

Sum Sq	3E+11	Std Err	62901.5	LHS Mean	1550964
RSq	0.7659	R Bar Sq	0.7556	F 3,68	74.1647
D.W.(1)	1.1396	D.W.(4)	1.4559		•

em28h employee-hours, chemical and allied products, DPSA. = gross regional product, chemical and allied products, DPSA. grp28dp <u>----</u> gross product deflator, chemical and allied products, US. pgpo28 = xwr28 average hourly earnings, chemical and allied products, DPSA. producer price index, chemical and allied products, US. ppicap = labor productivity, chemical and allied products, US. 1p28 \equiv

SIC2931-REFINED PETROLUEM PRODUCTS & HIDES, SKINS, AND LEATHER PRODUCTS

MFG91:EM2931H Cochran-Orcutt OUARTERLY data for 68 periods from 1973Q1 to 1989Q4 Date: 3 JAN 1991 log(em2931h) 0.23051 * log(grp2931dp/(pgpo2931/100)) (4.41979)- 0.86162 * log(.5*((xwr2931.14/(ppi2931.14/100))+(xwr2931.15/ (ppi2931.15/100)))) (3.17572)+ 0.26456 * log(rpucke2931) + 9.15229 (12.9606)(2.35201)0.4290 0.0825 LHS Mean 11.4498 Sum Sq Std Err F 4, 63 33.3702 0.6794 R Bar Sq 0.6590 R Sq D.W.(1)D.W.(4) 1.9264 2.0665 $AR_0 = + 0.42242 * AR 1$ (3.69350)employee-hours, refined petroleum products & hides, skins, em2931h ----and leather products, DPSA. gross regional product, refined petroleum products & hides, grp2931dp =skins, and leather products, DPSA. gross product deflator, refinded petroleum products & pqpo2931 = hides, skins, and leather products, US. xwr2931=average hourly earnings, refined petroleum products & hides, skins, and leather products, DPSA.

rpucke2931= real user cost of capital, refined petroleum products &
 hides, skins, and leather products, US.

SIC30-RUBBER AND RUBBER PRODUCTS

MFG91:EM30H.TWO Joint Two Stage Least Squares QUARTERLY data for 57 periods from 1975Q4 to 1989Q4 Date: 31 DEC 1990

log(em30h)

0.98562 * log(grp30dp/(pgpo30/100)) - 0.84480 * log(lp30) = (19.5557)(6.78397)+ 3.32138(10.3010)Std Err Sum Sq 0.1297 0.0490 LHS Mean 13.8355 2, 54 0.9651 746.049 R Sq R Bar Sq 0.9638 F D.W.(1)1.1361 D.W.(4) 1.2885

em30h = employee-hours, rubber and rubber products, DPSA.
grp30dp = gross regional product, rubber and rubber products, DPSA.
pgp030 = gross product deflator, rubber and rubber products, US.
lp30 = labor productivity, rubber and rubber products, US.

SIC32-STONE, CLAY, AND GLASS PRODUCTS

MFG91:EM32H.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 3 JAN 1991

D.W.(4)

log(em32h)

D.W.(1)

0.5145

÷

1.25229 * log(grp32dp/(pgpo32/100)) = (9.30403)- 0.23677 * log(xwr32/(ppiind/100)) - 1.34836 * log(lp32) (1.19321)(5.02187)+ 2.29530 (2.37829)Std Err Sum Sg 0.0910 0.0445 LHS Mean 13.4930 F 3, 46 74.3398 R Sq 0.8290 R Bar Sq 0.8179

1.3575

em32h	=	employee-hours, stone, clay, and glass products, DPSA.
grp32dp	=	gross regional product, stone, clay, and glass products, DPSA.
pgpo32	=	gross product deflator, stone, clay, and glass products, US.
xwr32	=	average hourly earnings, stone, clay and glass products, DPSA.
ppiind	=	producer price index, total industrial, US.
1p32	=	labor productivity, stone, clay, and glass products, US.

:

;

SIC33-PRIMARY METALS

AUGUAL CONTRACTOR AND	MFG91:EM33H Ordinary Least Squares QUARTERLY data for 61 periods from 1974Q4 to 1989Q4 Date: 28 DEC 1990
	log(em33h)
and provide	<pre>= 0.85938 * log(grp33dp/(pgpo33/100)) (19.9927)</pre>
Among Married	- 0.33635 * log(.2*((xwr33.8/(ppimmp.8/100))+(xwr33.11/ (2.49734) /(ppimmp.11/100)))+.3*((xwr33.9/(ppimmp.9/100))+
Community and	+(xwr33.10/ppimmp.10/100))))
Workship and a second state of the State	+ 0.17657 * log(rpucke33) + 1.86142 (2.60335) (5.83580)
-	Sum Sq0.2564Std Err0.0671LHS Mean12.7480R Sq0.9543R Bar Sq0.9519F3, 57396.906D.W.(1)0.8529D.W.(4)1.6492
	<pre>em33h = employee-hours, primary metals, DPSA. grp33dp = gross regional product, primary metals, DPSA. pgp033 = gross product deflator, primary metals, US. xwr33 = average hourly earnings, primary metals, DPSA. ppimmp = producer price index, metal and metal products, US. rpucke33 = real user cost of capital, primary metals, US.</pre>

Second and the second second

lewer (www.balin

a seconda

NASSA ST

SIC34-FABRICATED METALS

MFG91:EM34H Cochran-Orcutt QUARTERLY data for 76 periods from 1971Q1 to 1989Q4 Date: 28 DEC 1990

log(em34h)

= 0.72894 * log(grp34dp/(pgpo34/100)) (39.8634)

- 0.51795 *log(.2*((xwr34.7/(ppimmp.7/100))+(xwr34.10/(6.13869) (ppimmp.10/100)))+.3*((xwr34.8/(ppimmp.8/100))+(xwr34.9/(ppimmp.9/100))))

> + 0.09733 * log(rpucke34) + 4.43476 (2.91876) (15.0369)

Sum Sq	0.0634	Std Err	0.0303	LHS Mean	13.5638
R Sq	0.9846	R Bar Sq	0.9832	F 6,69	734.180
D.W.(1)	1.9456	D.W.(4)	1.9154		

 $AR_0 = + 0.49941 * AR_1 + 0.19387 * AR_4 - 0.38790 * AR_8$ (4.99287) (1.87561) (3.83825)

em34h	=	employee-hours, fabricated metals, DPSA.
grp34dp		gross regional product, fabricated metals, DPSA.
pgpo34	=	gross product deflator, fabricated metals, US.
xwr34	=	average hourly earnings, fabricated metals, DPSA.
ppimmp	-	producer price index, metals and metal products, US.
rpucke34		real user cost of capital, fabricated metals, DPSA.

SIC35-NON-ELECTRICAL MACHINERY

MFG91:EM35H.TWO Joint Two Stage Least Squares QUARTERLY data for 68 periods from 1973Q1 to 1989Q4 Date: 3 JAN 1991 em35h 0.28516 * grp35dp/(pgpo35/100) = (19.9766)- 389568 * .143*((xwr35.5/(ppimae.5/100))+(xwr35.9/ (7.10597) (ppimae.9/100)))+.229 *((xwr35.6/(ppimae.6/100))+(xwr35.8/(ppimae.8/100)))+.256* xwr35.7/(ppimae.7/100) + 10190.1 * rpucke35 + 3660369 (9.47470)(10.9982)Sum Sq 6E+11 Std Err 95314.1 LHS Mean 2203058 0.9295 F 3, 64 281.419 R Sq R Bar Sq 0.9262 D.W.(4)D.W.(1) 0.9245 1.7656 em35h employee-hours, non-electrical machinery, DPSA. \equiv gross regional product, non-electrcal machinery, DPSA. grp35dp = gross product deflator, non-electrical machinery, US. pgpo35 = average hourly earnings, non-electrical machinery, DPSA. xwr35 = producer price index, machinery, US. ppimae =

rpucke35 = real user cost of capital, non-electrical machinery, US.

SIC36-ELECTRICAL MACHINERY

EM36H.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991

log(em36h)

- = 0.78088 * log(grp36dp/(pgpo36/100)) 0.51120 * log(lp36) (15.6911) (6.10060)
 - 0.29868 *log(.143*((xwr36.5/(ppimae.5/100))+
 (2.12634)(xwr36.9/(ppimae.9/100)))+
 .229*((xwr36.6/(ppimae.6/100))+(xwr36.8/(ppimae.8/100)))+.256
 *(xwr36.7/(ppimae.7/100)))
 + 5.71520
 (11.6897)

Sum Sq	0.0903	Std Err	0.0391	LHS Mean	14.2443
R Sq	0.9439	R Bar Sq	0.9410	F 3,59	330.790
D.W.(1)	0.9345	D.W.(4)	1.5174		

em36h	=	employee-hours, electrical machinery, DPSA.
grp36dp	-	gross regional product, electrical machinery, DPSA.
pgpo36	' =	gross product deflator, electrical machinery, US.
lp36	=	labor productivity, electrical machinery, US.
xwr36	=	average hourly earnings, electrical machinery, DPSA.
ppimae	=	producer price index, machinery, US.

SIC37-TRANSPORTATION EQUIPMENT

EM37H.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991 em37h 1.68200 * grp37dp/(pgpo37/100) + 641.420 * rpucke37114 = (55.7312)(3.70499)-10555.0 * 1p37 + 341402(9.10578)(8.88093)Sum Sq 4E+10 Std Err 24431.5 LHS Mean 427925 1729.13 0.9888 R Bar Sq 0.9882 F 3, 59 R Sq D.W.(1)1.0483 D.W.(4) 1.4048 em37h = employee-hours, transportation equipment, DPSA. = gross regional product, transportion equipment, DPSA. grp37dp gross product deflator, transportation equipment, US. pgpo37 = rpucke37114 = real user cost of capital, transportation equipment, pdl starting at lag 11 with a length of 4 and even tails. 1p37 labor productivity, transportation equipment, US. =

SIC38-INSTRUMENTS

MFG91:EM38H Cochran-Orcutt QUARTERLY data for 71 periods from 1972Q2 to 1989Q4 Date: 3 JAN 1991 log(em38h)

0.60875 * log(grp38dp/(pgpo38/100)) + 5.24043 = (5.15271)(3.57305)12.7089 0.1863 Std Err 0.0523 LHS Mean Sum Sq 0.9531 F 2,68 712.745 R Sq 0.9545 R Bar Sq 1.9276 D.W.(4) 1.9662 D.W.(1)

 $AR_0 = + 0.85939 * AR_1$ (13.4572)

em38h	=	employee-hours,	instruments,	DPSA.
grp38dp	=	gross regional p	roduct, instr	cuments, DPSA.
pgpo38	=	gross product de	flator, inst	cuments, US.

SIC39-MISCELLANEOUS

and the second second	MFG91:EM39H Cochran-Orcutt QUARTERLY data for 83 periods from 1969Q2 to 1989Q4 Date: 3 JAN 1991
	log(em39h)
	<pre>= 0.32461 * log(grp39dp/(pgpo39/100)) + 8.55347 (3.69114) (8.21286)</pre>
manual parameter of the West Street	Sum Sq0.1417Std Err0.0421LHS Mean12.2834R Sq0.9209R Bar Sq0.9190F2, 80465.946D.W.(1)1.8333D.W.(4)2.2252
and the second second	$AR_0 = + 0.94787 * AR_1$ (27.7195)
Anter and a second seco	<pre>em39h = employee-hours, miscellaneous, DPSA. grp39dp = gross regional product, miscellaneous, DPSA. pgpo39 = gross product deflator, miscellaneous, US.</pre>
and the second second	
and a second	
and the state of the state	
Algorithms	
n in the second s	
New Augurate	
and the second se	·

MANUFACTURING WAGES

FOOD PRODUCTS

W20DP.TWO Joint Two Stage Least Squares QUARTERLY data for 54 periods from 1976Q3 to 1989Q4 Date: 2 FEB 1991

log(w20dp)

1.17551 * log(em20h) + 0.91680 * log(xwr20) - 4.72597 = (21.1928) (2.81277)(9.42212) 0.0506 Std Err 0.0315 LHS Mean 13.3330 Sum Sq 0.9880 F 2, 51 2190.46 0.9885 R Bar Sq R Sq D.W.(1) D.W.(4) 1.7972 0.7182

w20dp	=	wages, food products, DPSA.	
em20h	=	employee-hours, food products, DPSA.	
xwr20		average hourly earnings, food products,	DPSA.

TOBACCO PRODUCTS

MFG91:W21DP.TWO Joint Two Stage Least Squares QUARTERLY data for 80 periods from 1970Q1 to 1989Q4 Date: 26 DEC 1990

log(w2ldp)

Anney wards

 $= 0.96843 * \log(em21h) + 1.00117 * \log(xwr21) - 2.52222$ (3.34349) (50.4507) (0.63330)

Sum Sq	0.2581	Std Err	0.0579	LHS Mean	12.7088
RSq	0.9869	R Bar Sq	0.9866	F 2,77	2899.28
D.W.(1)	0.7514	D.W.(4)	1.2561		

w21dp		wages, tobacco products, DPSA.
em21h	=	employee-hours, tobacco products, DPSA.
xwr21	=	average hourly earnings, tobacco products, DPSA.

TEXTILE MILL PRODUCTS

MFG91:W22DP.TWO Joint Two Stage Least Squares QUARTERLY data for 82 periods from 1969Q3 to 1989Q4 Date: 31 DEC 1990

log(w22dp)

0.88954 * log(em22h) + 1.02701 * log(xwr22) - 1.14083 = (56.4528) (17.6014) (1.34600)14.8741 0.0461 Std Err 0.0241 LHS Mean Sum Sq F 2, 79 0.9932 5879.42 RSq 0.9933 R Bar Sq 1.0658 D.W.(4) 1.6027 D.W.(1)

w22dp	=	wages, textile mill products, DPSA.
em22h	=	employee-hours, textile mill products, DPSA.
xwr22		average hourly earnings, textile mill products, DPSA.

APPAREL PRODUCTS

MFG91:W23DP.TWO Joint Two Stage Least Squares QUARTERLY data for 51 periods from 1977Q2 to 1989Q4 Date: 31 DEC 1990

log(w23dp)

0.40132 * log(em23h) + 1.02899 * log(xwr23) + 6.25561 = (6.13935) (5.80539) (59.6705) 13.7239 0.0213 LHS Mean 0.0218 Std Err Sum Sq F 2, 48 1783.45 0.9862 0.9867 R Bar Sq R Sq D.W.(1) 0.9992 D.W.(4)1.7585

w23dp	=	wages, apparel products, DPSA.
em23ĥ	=	employee-hours, apparel products, DPSA.
xwr23	=	average hourly earnings, apparel products, DPSA.

LUMBER AND WOOD PRODUCTS

MFG91:W24DP.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 31 DEC 1990

log(w24dp)

=	0.57572 * (13.8956)	log(em24h)	+ 0.9856 (38.231	6 * log(xw: 2)	r24) + 3.53507 (6.70256)
Sum Sq R Sq D.W.(1)	0.0299 0.9915 1.1514	Std Err R Bar Sq D.W.(4)	0.0252 0.9911 1.7366	LHS Mean F 2,47	13.0533 2729.86

w24dp	=	wages, lumber and wood products, DPSA.
em24h	=	employee-hours, lumber and wood products, DPSA.
xwr24	-	average hourly earnings, lumber and wood products, DPSA.

FURNITURE AND FIXTURES

MFG91:W25DP.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 31 DEC 1990

log(w25dp)

0.56400 * log(em25h) + 1.16513 * log(xwr25) + 3.19204 = (4.69647) (72.9114)(12.1649) LHS Mean 0.0215 13.6380 Sum Sq 0.0217 Std Err R Bar Sq D.W.(4) R Sq 0.9935 0.9932 F 2, 47 3605.26 0.9022 1.7456 D.W.(1)

w25dp	=	wages, furniture and fixtures, DPSA.
em25h	=	employee-hours, furniture and fixtures, DPSA.
xwr25	=	average hourly earnings, furniture and fixtures, DPSA.

PAPER AND PAPER PRODUCTS

W26DP.TWO Joint Two Stage Least Squares QUARTERLY data for 53 periods from 1976Q4 to 1989Q4 Date: 2 FEB 1991

dlog(w26dp)

= 0.09335 * dlog(em26h) + 0.67315 * dlog(xwr26) + 0.00930(0.42558) (2.73045) (2.13767)

Sum Sq	0.0130	Std Err	0.0161	LHS Mean	0.0196
R Sq	0.0554	R Bar Sq	0.0176	F 2,50	1.4654
D.W.(1)	2.2702	D.W.(4)	1.4255	•	

w26dp	=	wages, paper and paper products, DPSA.
em26h	=	employee-hours, paper and paper products, DPSA.
xwr26	=	average hourly earnings, paper and paper products, DPSA.

PRINTING AND PUBLISHING

MFG91:W27DP Nonlinear Least Squares QUARTERLY data for 71 periods from 1972Q2 to 1989Q4 Date: 2 JAN 1991 log(w27dp) $0.86843 \times \log(em27h) + 1.10768 \times \log(xwr27) - 1.21048$ = (0.75585)(6.83406) (12.5744)0.0228 LHS Mean 12.5027 0.0337 Std Err Sum Sq 0.9983 F 5,65 8289.71 R Sq 0.9984 R Bar Sq D.W.(1)1.7713 D.W.(4)1.8951 $AR_0 = + 0.70172 * AR_1$ (7.76262)+ 0.23442 * MA 4 + 0.27185 * MA 8 MA 0 =(2.17789) (1.89244)wages, printing and publishing, DPSA. w27dp = employee-hours, printing and publishing, DPSA. em27h = average hourly earnings, printing and publishing, DPSA. xwr27 =

CHEMICAL AND ALLIED PRODUCTS

MFG91:W28DP.TWO Joint Two Stage Least Squares QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 31 DEC 1990

log(w28dp)

=	0.84112 * (17.0187)	log(em28h)	+ 1.0432 (117.75	24 * log(xw 56)	r28) - 0.29092 (0.41959)
Sum Sq R Sq D.W.(1)	0.0344 0.9976 1.1275	Std Err R Bar Sq D.W.(4)	0.0223 0.9975 1.3616	LHS Mean F 2,69	13.7364 14272.4

w28dp = wages, chemical and allied products, DPSA. em28h = employee-hours, chemical and allied products, DPSA. xwr28 = average hourly earnings, chemical and allied products, DPSA.

PETROLEUM PRODUCTS & HIDES, SKINS, AND LEATHER

MFG91:W2931DP Nonlinear Least Squares QUARTERLY data for 83 periods from 1969Q2 to 1989Q4 Date: 2 JAN 1991

log(w2931dp)

= 0.07875 * log(em2931h) + 1.19845 * log(xwr2931) + 7.74736(2.16906) (9.5497) (16.8821)

Sum Sq	0.0892	Std Err	0.0338	LHS Mean	10.5085
RSq	0.9960	R Bar Sq	0.9958	F 4,78	4880.98
D.W.(1)	1.8781	D.W.(4)	1.7741		

 $AR_0 = + 0.90373 * AR_1$ (17.0623)

 $MA_0 = + 0.29377 * MA_4$ (2.55859)

w2931dp = wages, petroleum products & hides, skins, and leather, DPSA.

em2931h = employee-hours, petroleum products & hides, skins, and leather, DPSA.

xwr2931 = average hourly earnings, petroleum products & hides, skins, and leather, DPSA.

RUBBER AND PLASTICS PRODUCTS

MFG91:W30DP.TWO Joint Two Stage Least Squares QUARTERLY data for 57 periods from 1975Q4 to 1989Q4 Date: 31 DEC 1990

log(w30dp)

 $0.74566 * \log(em30h) + 1.04851 * \log(xwr30) + 0.91603$ = (12.1438)(19.0947)(1.22149)LHS Mean Sum Sq 0.0664 Std Err 0.0351 13.2376 F 2, 54 0.9950 R Bar Sq 0.9949 5426.84 R Sq D.W.(1)1.4114 D.W.(4) 0.8407

w30dp	=	wages, rubber and plastic products, DPSA.
em30h	=	employee-hours, rubber and plastic products, DPSA.
xwr30		average hourly earnings, rubber and plastic products, DPSA.

STONE, CLAY AND GLASS PRODUCTS

MFG91:W32DP Ordinary Least Squares QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 20 DEC 1990

log(w32dp)

 $0.79898 * \log(em32h) + 1.07172 * \log(xwr32) - 0.05136$ (0.09661)(19.8767) (94.7996) Sum Sq 0.0629 0.0302 LHS Mean 12.6099 Std Err 7405.46 0.9954 0.9952 F 2, 69 R Bar Sq R Sq D.W.(1)0.9156 D.W.(4)1.4061

w32dp = wages, stone, clay and glass products, DPSA. em32h = employee-hours, stone, clay and glass products, DPSA. xwr32 = average hourly earnings, stone, clay and glass products, DPSA.

PRIMARY METAL PRODUCTS

MFG91:W33DP Cochran-Orcutt QUARTERLY data for 67 periods from 1973Q2 to 1989Q4 Date: 31 DEC 1990

log(w33dp)

0.44071 * log(em33h) + 1.38825 * log(xwr33) + 3.94336 = (23.0492)(5.71659)(7.13045)LHS Mean 0.0313 12.1190 0.0588 Std Err Sum Sq 0.9972 F 6, 60 3951.75 0.9975 R Bar Sq R Sq D.W.(4)1.9746 D.W.(1)1.8771 AR 0 = +0.92815 * AR 1 - 0.40388 * AR 2 + 0.21940 * AR 3

w33dp	=	wages, primary metal products, DPSA.
em33h	=	employee-hours, primary metal products, DPSA.
xwr33	=	average hourly earnings. primary metal products, DPSA.

FABRICATED METAL PRODUCTS

MFG91:W34DP Nonlinear Least Squares QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 28 DEC 1990 log(w34dp) $0.38816 * \log(em34h) + 1.11712 * \log(xwr34) + 5.63767$ = (5.23403)(4.55716)(15.6886)0.0239 Std Err 0.0221 LHS Mean 13.0789 Sum Sq 0.9954 F 6, 49 1979.82 0.9959 R Bar Sq R Sq D.W.(4) 1.9533 D.W.(1) 1.8336 + 0.61987 * AR_1 + 0.17395 * AR_3 - 0.17400 * AR_8 AR 0 =(1.59423)(2.21381)(5.20555)+ 0.54190 * MA 2 MA 0 =(3.99483)wages, fabricated metal products, DPSA. w34dp = • • em34h = employee-hours, fabricated metal products, DPSA. xwr34 average hourly earnings, fabricated metal products, DPSA. =

NON-ELECTRICAL MACHINERY

MFG91:W35DP.TWO Joint Two Stage Least Squares QUARTERLY data for 68 periods from 1973Q1 to 1989Q4 Date: 3 JAN 1991

log(w35dp)

0.99426 * log(em35h) + 1.16867 * log(xwr35) - 2.90955 = (24.0896) (2.07804)(9.7899)13.7246 Sum Sq 0.1569 Std Err 0.0491 LHS Mean 0.9924 R Bar Sq 0.9922 F 2,65 4240.83 R Sq 1.2123 D.W.(1)0.4373 D.W.(4)

w35dp	=	wages, non-electrical machinery, DPSA.
em35h	=	employee-hours, non-electrical machinery, DPSA.
xwr35	=	average hourly earnings, non-electrical machinery, DPSA.
ELECTRICAL MACHINERY

W36DP.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991

log(w36dp)

٠

= 0.77934 * log(em36h) + 1.12566 * log(xwr36) + 0.46048(9.04555) (26.3265) (0.39687)

Sum Sa	0.1781	Std Err	0.0545	LHS Mean	13.6227
R Sq	0.9874	R Bar Sq	0.9870	F 2,60	2346.29
D.W.(1)	0.4954	D.₩.(4)	1.0356		

w36dp	=	wages, electrical machinery, DPSA.
em36ĥ	=	employee-hours, electrical machinery, DPSA.
xwr36	#	average hourly earnings, electrical machinery, DPSA.

TRANSPORTATION EQUIPMENT

W37DP.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991

log(w37dp)

 $0.52531 * \log(em37h) + 2.01024 * \log(xwr37) + 1.46496$ = (4.52424) (9.5267) (1.31900)0.8303 0.1176 LHS Mean 11.9191 Std Err Sum Sq 0.9843 F 2,60 1941.60 0.9848 R Bar Sq R Sq D.W.(1) 0.5163 D.W.(4) 0.7156

w37dp	=	wages, transportation equipment, DPSA.
em37h	=	employee-hours, transportation equipment, DPSA.
xwr37	=	average hourly eqrnings, transportation, DPSA.

Integrated Resource Planning

INSTRUMENTS

, линичения , лин	MFG91:W38DP Cochran-Orcutt QUARTERLY data for 67 periods from 1973Q2 to 1989Q4 Date: 3 JAN 1991
,	dlog(w38dp)
11	= 0.14073 * dlog(em38h) + 0.02477 (2.57638) (5.57347)
and the second sec	Sum Sq 0.0476 Std Err 0.0273 LHS Mean 0.0272 R Sq 0.1751 R Bar Sq 0.1494 F 2,64 6.7946 D.W.(1) 1.8632 D.W.(4) 2.2657
(Bhoreestaday	$AR_0 = + 0.24083 * AR_4$ (2.35881)
anna sea ann ann an Anna Anna Anna Anna Anna An	
Sector and s	<pre>w38dp = wages, instruments, DPSA. em38h = employee-hours, instruments, DPSA. xwr38 = average hourly earnings, instruments, DPSA.</pre>
an and a second s	
Parameter and the second se	
Seal for All the All t	
Concernant of the second	
y . A second by any	
n an	
	Integrated Resource Planning

MISCELLANEOUS PRODUCTS

MFG91:W39DP Cochran-Orcutt QUARTERLY data for 77 periods from 1970Q4 to 1989Q4 Date: 3 JAN 1991

log(w39dp)

 $0.30296 * \log(em39h) + 0.94977 * \log(xwr39) + 5.93339$ = (3.27695) (5.32661)(5.15028)0.0966 Std Err 0.0369 LHS Mean 11.2179 Sum Sq 1749.40 0.9914 F 5, 71 R Sq 0.9919 R Bar Sq D.W.(1)1.9296 D.W.(4) 1.8548 $AR 0 = + 0.86102 * AR 1 + 0.19213 * AR 4 - 0.13353 * AR_7$ (1.92605) (11.2875)(1.61225)

w39dp	-	wages, miscellaneous products, DPSA.
em39h	-	employee-hours, miscellaneous products, DPSA.
xwr39		average hourly earnings, miscellaneous products, DPSA.

MANUFACTURING GROSS PRODUCT

FOOD PRODUCTS

GRP20DP.TWO Joint Two Stage Least Squares QUARTERLY data for 54 periods from 1976Q3 to 1989Q4 Date: 2 FEB 1991

diff(grp20dp)

= 18949.2 * diff(gpo20) + 3703.17 (8.06331) (1.13369)

Sum Sq 2E+10 Std Err 17559.9 LHS Mean 21660.4 0.5556 R Bar Sq 0.5471 F 1, 52 65.0169 R Sq D.W.(1) 2.1165 D.W.(4) 1.2458

grp20dp	=	gross	product,	food	products,	DPSA.
gpo20	=	gross	product,	food	products,	US.

TOBACCO PRODUCTS

MFG91:GRP21DP.TWO Joint Two Stage Least Squares QUARTERLY data for 80 periods from 1970Q1 to 1989Q4 Date: 26 DEC 1990 grp21dp 220741 * gpo21 + 14.9005 * w2ldp/wb21 = (57.3844)(19.8162)+ 3063128 * (1-(xwr21.2/ahemin21\$.2))/(xwr21.2/ahemin21\$.2) (5.25889)- 3050724 (19.6816)8E+11 Std Err 102841 LHS Mean 2052190 Sum Sq R Bar Sq 0.9938 3, 76 4230.47 R Sq 0.9940 F D.W.(1)0.9690 D.W.(4) 1.2501 gross product, tobacco products, DPSA. grp21dp = gross product, tobacco products, US. gpo21 wages, tobacco products, DPSA. = w21dp wb21 = wages, tobacco products, US. average hourly earnings, tobacco products, DPSA. average hourly earnings, tobacco products, DPSA. xwr21 =

ahemfn21\$ =

TEXTILE MILL PRODUCTS

MFG91:GRP22DP.TWO Joint Two Stage Least Squares QUARTERLY data for 82 periods from 1969Q3 to 1989Q4 Date: 31 DEC 1990 grp22dp 270404 * gpo22 + 12.5040 * w22dp/wb22 + 44565.9 * rcell = (19.6957) (1.68496)(297.963) - 3404044 (19.7416)Sum Sq 4E + 10Std Err 23504.5 LHS Mean 3910636 61016.2 0.9996 R Bar Sq 0.9996 F 3,78 R Sq D.W.(1) 1.0786 D.W.(4) 1.4447 gross product, textile mill products, DPSA. grp22dp = gross product, textile mill products, US. gpo22 = w22dp = wages, textile mill products, DPSA. wb22 wages, textile mill products, US. = DPSA to US, logistic rcell . 🗯 relative cost of electricity, structure.

APPAREL PRODUCTS

MFG91:GRP23DP.TWO Joint Two Stage Least Squares QUARTERLY data for 51 periods from 1977Q2 to 1989Q4 Date: 31 DEC 1990

grp23dp

=	56476.9 * gpo2 (109.945)	3 + 17.7382 * (42.7850)	w23dp/wb23	+ 71755.6 * (5.06920)	rcngl135
-	977579 (47.3307)			·	
Sum Sq R Sq D.W.(1)	2E+09 Std 0.9992 R Ba 0.8057 D.W.	Err 6225.98 r Sq 0.9991 (4) 1.6428	LHS Mean F 3, 47	1146167 18612.5	
grp23dp gpo23 w23dp wb23 rcng1135	<pre>= gross pro = gross pro = wages, ap = wages, ap = relative structure tails.</pre>	duct, apparel duct, apparel parel product parel product cost of natur , pdl starting	products, I products, U s, DPSA. s, US. cal gas, DPS g at lag 13 v	DPSA. JS. SA to US, lo vith a lag of	gistic 5 with even

LUMBER AND WOOD PRODUCTS

MFG91:GRP24DP.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 31 DEC 1990

grp24dp

. =	0.49901 * (22.1887)	grp25dp -	+ 520661 * (5.91913)	rcngl154	+ 292995 (7.04887)
Sum Sq R Sq D W (1)	6E+10 0.9745	Std Err R Bar Sq	35135.5 0.9734 1.7334	LHS Mean F 2, 47	757105 897.632

grp24dp = gross product, lumber and wood products, DPSA.
grp25dp = gross product, furniture and fixtures, DPSA.
rcng1154 = relative cost of natural gas, DPSA to US, logistic
structure, pdl starting at lag 15 with a lag of 4
with even tails.

FURNITURE AND FIXTURES

MFG91:GRP25DP.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 31 DEC 1990

grp25dp

	97202.2 * (253.513)	gpo25 + 1 (2	0.0878 * 0.5444)	w25dp/wb25	- 977405 (21.6289)
Sum Sq	3E+09	Std Err	7973.95	LHS Mean	1144106
R Sq	0.9995	R Bar Sq	0.9995	r 2,4/	4/100.2
D.W.(1)	0.6374	D.W.(4)	1.2729		

grp25dp	=	•	gross	product,	furnit	ure	and	fixtures,	DPSA.
gpo25	=		gross	product,	furnit	ture	and	fixtures,	US.
w25dp	=		wages,	furnitu	e and	fixt	tures	5, DPSA.	
wb25	=		wages,	, furnitur	e and	fixt	tures	s, US.	

Integrated Resource Planning

PAPER AND PAPER PRODUCTS

GRP26DP.TWO Joint Two Stage Least Squares QUARTERLY data for 53 periods from 1976Q4 to 1989Q4 Date: 2 FEB 1991

grp26dp

= 37551.9 * gpo26 + 532862 * rcwg261 + 107791 * rcng1[-15] (78.6513) (1.70283) (3.50594)

+ 52039.5 * rcell[-7] - 129198 (1.44618) (5.71358)

Sum Sq	9E+09	Std Err	13996.3	LHS Mean	986372
RSq	0.9986	R Bar Sq	0.9984	F 4,48	8287.39
D.W.(1)	1.2151	D.W.(4)	1.6828		

grp26dp = gross product, paper and paper products, DPSA.
gpo26 = gross product, paper and paper products, US.
rcwg261 = relative cost of labor, DPSA to US, paper and paper
products, logistic structure.
rcng1 = relative cost of natural gas, DPSA to US, logistic
structure.

rcell = relative cost of electricity, DPSA to US, logistic structure.

PRINTING AND PUBLISHING

MFG91:GRP27DP Cochran-Orcutt QUARTERLY data for 57 periods from 1975Q4 to 1989Q4 Date: 2 JAN 1991 grp27dp/(pgpo27/100) 0.00846 * rgrpdp + 100810 * rcell[-7] + 81789.6 *rcngl[-6] = (3.76754) (2.98581)(21.7691) - 73433.6 (2.42026) Std Err 11833.2 LHS Mean 471810 Sum Sq 7E+09 F 6, 50 529.288 R Sq 0.9845 R Bar Sq 0.9826 D.W.(1)1.9997 D.W.(4) 1.6149 $AR_0 = + 0.59903 * AR_1 + 0.23474 * AR_3 - 0.31384 * AR_5$ (5.05339) (1.74169) (2.37046) grp27dp gross product, printing and publishing, DPSA. =

pgpo27 = gross product deflator, printing and publishing, US.

rgrpdp	. =	real	gross	product,	total,	DPSA.
--------	-----	------	-------	----------	--------	-------

rcell	-	relative	cost	of	electricity,	DPSA	to	ΰs,	logistic
		structure	•						•
_									

rcngl	=	relative	cost	of	natural	gas,	DPSA	to	ΨS,	logistic
		structure	•							

CHEMICAL AND ALLIED PRODUCTS

MFG91:GRP28DP.TWO Joint Two Stage Least Squares QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 31 DEC 1990

grp28dp

1

. =	34257.9 * (94.4449)	gpo28 + 4 (9	4.2582 * .20071)	w28dp/wb28	- 1508184 (10.1696)
Sum Sq R Sq D.W.(1)	2E+11 0.9970 0.4791	Std Err R Bar Sq D.W.(4)	47628.7 0.9969 1.7118	LHS Mean F 2,69	1783401 11370.0

grp28dp	=	gross product, chemical and allied products, DP	SA.
gpo28	=	gross product, chemical and allied products, US	•
w28dp	=	wages, chemical and allied products, DPSA.	
wb28	=	wages, chemical and allied products, US.	

RUBBER AND PLASTIC PRODUCTS

MFG91:GRP30DP.TWO Joint Two Stage Least Squares QUARTERLY data for 57 periods from 1975Q4 to 1989Q4 Date: 31 DEC 1990

grp30dp

=	40828.7 * (68.9438)	gpo30 + 1 (1	1.0984 * 5.7155)	w30dp/wb30	+ 191173 * (3.14670)
	rcwg30186	i			
+	117012 * (3.58885)	rcngl83 -	570525 (16.2391)		
Sum Sq R Sq D.W.(1)	1E+10 0.9984 0.3176	Std Err R Bar Sq D.W.(4)	14870.7 0.9983 1.1254	LHS Mean F 4, 52	825460 8274.25

grp30dp	=	gross product, rubber and plastic products, DPSA.
gpo30	=	gross product, rubber and plastic products, US.
w30dp	Ξ.	wages, rubber and plastic products, DPSA.
wb30	=	wages, rubber and plastic products, US.
rcwg30186	-	relative cost of labor, DPSA to US, rubber and plastic
		products, pdl starting at lag 18 with a lag of 6 and
		even tails, logistic structure.
rcng183	=	relative cost of natural gas, DPSA to US, pdl starting at
-		lag 8 with a lag 3 and even tails.

STONE, CLAY, AND GLASS PRODUCTS

MFG91:GRP32DP.TWO Joint Two Stage Least Squares QUARTERLY data for 50 periods from 1977Q3 to 1989Q4 Date: 3 JAN 1991 grp32dp 26440.9 * gpo32 + 19.5761 * w32dp/wb32 + 52998.0 * rcngl154 = (20.3093) (12.8301)(2.18982)499339 (26.7854)Sum Sq 4E+09 Std Err 8733.80 LHS Mean 558087 R Sq 0.9978 R Bar Sq 0.9977 F 3,46 7013.95 D.W.(1)D.W.(4) 0.1353 0.9488 gross product, stone, clay, and glass products, DPSA. qrp32dp = gpo32 gross product, stone, clay, and glass products, US. = w32dp = wages, stone, clay, and glass products, DPSA. wb32 =

wb32 = wages, stone, clay, and glass products, US. rcngl154 = relative cost of natural gas, DPSA to US, logistic structure, pdl starting at lag 15 with a lag of 4 and even tails.

PRIMARY METAL PRODUCTS

Cannot find GRP33DP.TWO MFG91:GRP33DP Nonlinear Least Squares OUARTERLY data for 71 periods from 1972Q2 to 1989Q4 Date: 31 DEC 1990 grp33dp 0.08625 * grp34dp+grp35dp+grp36dp+grp37dp - 3019.95 = (354.413)(20.4530)268767 Res Mean 12803.5 Sum Sq 1E+10Std Err LHS Mean 464.539 0.9930 F 3, 67 3316.12 **%RMSE** R Sq 0.9933 R Bar Sq 8.1791 1.9488 D.W.(4)1.9863 D.W.(1) $AR 0 = + 0.89803 * AR_1$ (14.3350)MA 0 =+ 0.24979 * MA 1 (1.96397)

grp33dp = gross product, primary metal products, DPSA. grp34dp = gross product, fabricated metal products, DPSA. grp35dp = gross product, non-electrical machinery, DPSA. grp36dp = gross product, electrical machinery, DPSA. grp37dp = gross product, transportation equipment, DPSA.

FABRICATED METALS

MFG91:GRP34DP Cochran-Orcutt QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 28 DEC 1990 grp34dp 0.24285 * grp35dp+grp36dp+grp37dp + 8444.59 = (0.29789)(23.8320)LHS Mean Sum Sq 1E + 10Std Err 16158.6 651815 0.9966 0.9969 R Bar Sq F 5, 57 3608.07 R Sq D.W.(1)2.0488 D.W.(4) 1.5510 $AR 0 = + 0.80582 * AR 1 + 0.18732 * AR_4 + 0.55130 * AR_8$ (10.6199) - 0.70431 * AR_9 (4.15391)(1.77793)(6.82938)gross product, fabricated metal products, DPSA. grp34dp = gross product, non-electrical machinery, DPSA. = grp35dp gross product, electrical machinery, DPSA. = grp36dp gross product, transportation equipment, DPSA. grp37dp

Integrated Resource Planning

NON-ELECTRICAL MACHINERY

MFG91:GRP35DP.TWO Joint Two Stage Least Squares QUARTERLY data for 68 periods from 1973Q1 to 1989Q4 Date: 3 JAN 1991

grp35dp

14811.8 * gpo35 + 100.145 * w35dp/wb35 + 1231723 * (4.77373)(33.5300)(29.2436)rcwg35114 - 1877700 (13.3417)Std Err LHS Mean 1304037 Sum Sq 10E + 138780.6 R Sq 0.9959 R Bar Sq 0.9957 F 3, 64 5160.34 1.4026 D.W.(1) 0.3705 D.W.(4)

grp35dp = gross product, non-electrical machinery, DPSA.
gpo35 = gross product, non-electrical machinery, US.
w35dp = wages, non-electrical machinery, DPSA.
wb35 = wages, non-electrical machinery, US.
rcwg35l14 = relative cost of labor, DPSA to US, logistic structure,
pdl starting at lag 1 with a length of 4 and even tails.

ELECTRICAL MACHINERY

GRP36DP.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991

۰.

grp36dp

ļ

=	23127.5 *	gpo36 +	594667 *	rcwg361 - 372871		
	(56.1311)	(2	.75614)	(7.11422)		
Sum Sq	1E+11	Std Err	45972.1	LHS Mean	1145863	
R Sq	0.9917	R Bar Sq	0.9914	F 2,60	3571.81	
D.W.(: 1)	0.2971	D.W.(4)	1.0040			

grp36dp	=	gross product, electrical machinery, DPSA.
gpo36	=	gross product, electrical machinery, US.
rcwg361	=	relative cost of labor, DPSA to US, electrical machinery,
		logistic structure.

TRANSPORTATION EQUIPMENT

GRP37DP.TWO Joint Two Stage Least Squares QUARTERLY data for 63 periods from 1974Q2 to 1989Q4 Date: 2 FEB 1991

grp37dp

6827.59 * gpo37 + 157265 * rcngl24 - 228329 = (28.1721) (2.03470) (7.33855)8E+10 Std Err 36930.0 LHS Mean 265484 Sum Sq R Bar Sq 0.9658 R Sq F 2,60 876.663 0.9669 D.W.(4) 0.5461 D.W.(1) 0.1582

grp37dp		gross product, transportation equipment, DPSA.
gpo37	=	gross product, transportation equipment, US.
rcng124	=	relative cost of natural gas, DPSA to US, logistic
•		structure, pdl starting at lag 2 with a length of 4
	•	and even tails.

INSTRUMENTS

MFG91:GRP38DP Cochran-Orcutt QUARTERLY data for 55 periods from 1976Q2 to 1989Q4 3 JAN 1991 Date: grp38dp/(pgp038/100) 0.00546 * rgrpdp + 389377 * rcwg38155 - 235298 = (5.09580)(6.63954)(14.0773)5459.70 LHS Mean 255263 Sum Sq 1E + 09Std Err 0.9838 R Bar Sq 0.9814 F 7,47 407.137 R Sq D.W.(1)1.7990 D.W.(4) 1.9693 $AR_0 = + 0.69941 * AR_1 - 0.17889 * AR_2 + 0.37177 * AR_4$ (3.18222)(6.36984) (1.64563) - 0.54128 * AR_5 + 0.23317 * AR_8 (5.02901)(3.80929) gross product, instruments, DPSA. grp38dp = pgpo`38 = gross product deflator, instruments, US. real gross product, total, DPSA. rgrpdp = relative cost of labor, DPSA to US, instruments, pdl rcwg38155 = starting at lag 5 with a length of 5 and even tails.

MISCELLANEOUS PRODUCTS

MFG91:GRP39DP Cochran-Orcutt QUARTERLY data for 62 periods from 1974Q3 to 1989Q4 Date: 3 JAN 1991

grp39dp

= 0.00353 * rgrpdp + 34070.7 * rcell103 + 19196.6 * rcngl[-5] (14.7324) (3.00830) (2.81273)

- 113511 (6.31723)

Sum Sq	5E+08	Std Err	2820.91	LHS Mean	109152
RSq	0.9957	R Bar Sq	0.9954	F 4, 57	3303.52
D.W.(1)	1.9861	D.W.(4)	2.0212		

 $AR_0 = + 0.89171 * AR_1$ (12.8426)

grp39dp = gross product, miscellaneous products, DPSA.

rgrpdp = real gross product, total, DPSA.

rcell103 = relative cost of electricity, DPSA to US, logistic structure, pdl starting at lag 10 with length 3 and even tails.

rcngl = relative cost of natural gas, DPSA to US, logistic structure.

C. NON-MANUFACTURING WAGE EQUATIONS

Wages Employment Gross Product

NON-MANUFACTURING WAGE EQUATIONS

Cochran-Orcutt QUARTERLY data for 40 periods from 1980Q1 to 1989Q4 Date: 6 JAN 1991

log(agwdpx)

1.19990 * log(em01beax) + 0.71552 * log(wrwaff) - 2.83283 -(2.95020)(2.68200)(7.68050)Std Err 0.0442 LHS Mean 11.8525 0.0704 Sum Sq 0.9869 F 3, 36 982.471 0.9879 R Bar Sq R Sq 2.2690 1.4862 D.W.(4) D.W.(1) $AR 0 = + 0.75914 * AR_1$ (7.17244)

Ordinary Least Squares QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 15 JAN 1991 log(conwdpx) 1,44396 * log(em15beax+em16beax+em17beax) = (56.4795)+ 0.96496 * log(ahecc\$) - 4.76000(18.0985)(32.9671)0.0213 LHS Mean 14.7009 0.0205 Std Err Sum Sq F 2, 45 5656.91

R Sq 0.9960 R Bar Sq 0.9959 F 2, 45 5656.91 D.W.(1) 0.6036 D.W.(4) 2.1793

Integrated Resource Planning

Page 79

Cochran-Orcutt QUARTERLY data for 24 periods from 1984Q1 to 1989Q4 Date: 6 JAN 1991

log(fwdpx)

1.18483 * log(emfarbeax) + 1.42882 * log(wrwaff) - 6.42699 = (2.44293)(11.3809) (6.14020) LHS Mean 13.2695 0.0325 Std Err 0.0413 Sum Sq R Bar Sq 0.8471 F 4, 19 32.8498 0.8737 R Sq D.W.(1) 1.0726 D.W.(4) 1.3216 $AR_0 = -0.08557 * AR_3 - 0.32268 * AR_4$ (1.57115) (6.07364)

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 26 DEC 1990 log(firwdpx) 0.92940 * log(emfirbeax) + 1.06016 * log(ahefi\$) = (4.04100)(2.98355)-0.03760 * d82 + 1.35853(0.53040)(3.00868)LHS Mean 14.3524 0.0122 Std Err 0.0168 Sum Sq R Bar Sq D.W.(4) 0.9974 F 4, 43 4564.24 0.9977 R Sq 1.5071 D.W.(1) 1.6234 AR 0 =+ 0.93964 * AR_1 (22.8426)

Cochran-Orcutt QUARTERLY data for 60 periods from 1975Q1 to 1989Q4 Date: 26 DEC 1990 log(govwdpx) 1.36540 * log(emgovbeax) + 0.91446 * log(wrwgov) - 7.52848 = (7.49850)(29.3386)(15.4973) LHS Mean 15.0993 0.0122 Sum Sq 0.0083 Std Err F 3, 56 19225.2 0.9990 R Bar Sq 0.9990 R Sq D.W.(4) 2.2582 1.0152 D.W.(1) $AR 0 = + 0.75525 * AR_4$ (7.74063)

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 15 JAN 1991 log(minwdpx) 0.88632 * log(em10beax) + 0.82969 * log(ahemg14\$) = (1.79930)(1.63639)-0.47310 * d8689 + 0.22855 * d85 + 2.64546(0.60516) (2.48378) (3.88123)0.0857 LHS Mean 11.3711 0.3088 Std Err Sum Sq F 5,42 67.4741 0.8893 R Bar Sq 0.8761 R Sq D.W.(1)1.6521 D.W.(4) 1.5233 $AR_0 = + 0.79104 * AR_1$ (7.28044)

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 15 JAN 1991 log(rtrwdpx) 1.18548 * log(emrtrbeax) + 0.90379 * log(ahewr\$) = (4.02827) (9.00978) - 0.09712 * d82 - 1.72215 (9.32082)(1.33108)Std Err 0.0080 LHS Mean 15.1156 0.0028 Sum Sq F 4, 43 15593.6 0.9993 R Bar Sq 0.9992 R Sq D.W.(4) 1.3093 D.W.(1) 2.0745 $AR_0 = + 0.84181 * AR_1$

(7.68718)

Ordinary Least Squares QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 15 JAN 1991

log(serwdpx)

Į.

=	1.12428 * (21.0035)	log(emserb	- 0.88959 (1.43447)			
Sum Sq	0.0296	Std Err	0.0236	LHS Mean	15.4958	
R Sq	0.9974	R Bar Sq	0.9973	F 2, 53	10319.9	

Integrated Resource Planning

Cochran-Orcutt QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 26 DEC 1990 log(tpuwdpx) 1.03863 * log(emtpubeax) + 1.09687 * log(ahergt\$) + 0.18387 = (23.1975)(0.26040)(15.1769) 0.0045 Std Err 0.0081 LHS Mean 14.5120 Sum Sq 89921.4 0.9997 R Bar Sq 0.9997 F 3,68 R Sq D.W.(4) 1.5604 D.W.(1) 2.2381 AR 0 = + 0.86404 * AR 1

(12.1945)

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 26 DEC 1990 log(wtrwdpx) 1.31669 * log(em5051beax) + 1.36181 * log(ahewr\$) - 3.13340 = (17.7907) (9.7906) (4.05148)LHS Mean 0.0031 Std Err 0.0084 14.7054 Sum Sq F 3,44 19520.6 0.9992 R Bar Sq 0.9992 R Sq 1.8459 D.W.(4) 1.5500 D.W.(1) $AR_0 = + 0.87085 * AR_1$ (21.1427)

NON-MANUFACTURING GROSS REGIONAL PRODUCT

Cochran-Orcutt QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 30 JAN 1991

grpagdp

0.01599 * grpdp + 2E+08 * agwdpx/totwage - 884115 = (11.3845)(11.9438)(8.90553) 631708 Sum Sq 3E+10 Std Err 25187.0 LHS Mean 0.9888 F 3, 52 1623.32 R Sq 0.9894 R Bar Sq D.W.(1) 1.8766 D.W.(4) 1.6726

 $AR_0 = + 0.75405 * AR_1$ (8.73174)

Cochran-Orcutt QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 8 JAN 1991 grpcondp 2E+07 25119.9 * gpocon82 + 1748.90 * conwdpx/wb + = (0.01268)(8.82414) (4.48513)4689584 3E+11 Std Err 75154.9 LHS Mean Sum Sq 0.9891 R Bar Sq 0.9883 F 4, 51 1160.44 R Sq 1.6706 D.W.(4) D.W.(1)1.3452 $AR_0 = + 0.69324 * AR_1 + 0.30603 * AR_4$ (7.15721)(2.71018)

Cochran-Orcutt QUARTERLY data for 32 periods from 1982Q1 to 1989Q4 Date: 9 JAN 1991 qrpfdp 0.03660 * grpdp + 2E+08 * fwdpx/totwage - 2209796 = (17.2589) (6.06584) (7.44893)81770.9 2411830 Sum Sq 2E+11 Std Err LHS Mean 0.9793 R Bar Sq D.W.(4) 0.9771 F 3, 28 441.974 R Sq D.W.(1) 1.8048 1.7518

 $AR_0 = + 0.72260 * AR_1$ (5.45550)
Cochran-Orcutt QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 8 JAN 1991 grpfirdp 0.03034 * grpdp + 5E+07 * firwdpx/totwage - 1296742 = (6.64985) (10.1369) (2.42616) LHS Mean 3049406 6E+10 Std Err 34812.0 Sum Sq 0.9911 R Bar Sq 0.9902 F 5,50 1117.65 R Sq D.W.(4) D.W.(1)2.0910 2.5982 $AR 0 = + 0.73812 * AR_1 + 0.90578 * AR_4 - 0.68980 * AR_5$ (8.09031) (14.4589) (6.85818)

Ordinary Least Squares QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 30 JAN 1991

grpgovdp

=	498.822 * (31.5723)	(nddpsay.4/pdice.4)/sapop.4
	+ 8447084 * (1.40433)	govwdpx/totwage - 1460120 (2.04826)

Sum Sq	4E+11	Std Err	91212.2	LHS Mean	3888766
R Sq	0.9522	R Bar Sq	0.9504	F 2,53	527.732
D.W.(1)	1.5186	D.W.(4)	0.8810		

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 8 JAN 1991 grpmindp 0.00418 * grpdp + 1E+08 * minwdpx/totwage - 207784 = (2.13163)(12.6113)(3.38575)2E+10 Std Err 22133.7 LHS Mean 369705 Sum Sq 0.9296 F 3, 44 207.716 R Bar Sq 0.9340 RSq D.W.(1)1.8381 D.W.(4) 1.8325 AR 0 = + 0.73002 * AR 1(7.39573)

• .

Integrated Resource Planning

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 8 JAN 1991 grprtrdp 21.4136 * ndpsay/pdice + 7E+07 * rtrwdpx/totwage - 9949278 = (11.7790) (7.13716)(6.70667)Std Err 90562.4 LHS Mean 7288830 Sum Sq 4E + 11R Bar Sq 0.9941 F 4, 43 1975.39 R Sq 0.9946 1.7926 D.W.(4) 1.5317 D.W.(1) $AR_0 = + 0.53479 * AR_1 + 0.33877 * AR_4$ (4.84719)(3.15789)

Cochran-Orcutt QUARTERLY data for 40 periods from 1980Q1 to 1989Q4 Date: 8 JAN 1991 grpserdp 23.6362 * nddpsay/pdice + 6E+07 * serwdpx/totwage - 8099526 = (2.80275)(3.88812) (4.46545)LHS Mean Sum Sq 1E+12 Std Err 203523 1E+07 0.9901 0.9886 F 5, 34 679.732 R Bar Sq RSq. 1.5238 D.W.(4) 2.6307 D.W.(1) $AR_0 = + 0.77479 * AR_1 + 0.74183 * AR_4 - 0.68533 * AR_5$ (6.08541) (6.88914) (4.65334)

۰.

G1RP91:GRPTPUDP Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 8 JAN 1991

grptpudp

0.08155 * grpdp + 3E+07 * tpuwdpx/totwage - 2480344 = (4.03471) (5.18219) (43.4061) Std Err LHS Mean 59107.8 4901146 1E+11 Sum Sq R Sq R Bar Sq 0.9952 F 5, 42 1954.50 0.9957 D.W.(1) 2.2077 D.W.(4) 1.6204 $AR 0 = + 0.71877 * AR 1 + 0.70235 * AR_4 - 1.08423 * AR_5$ (9.28988) (5.19459) (8.24270)

[

GRP91:GRPWTRDP Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 30 JAN 1991 grpwtrdp 0.02493 * rgrpmfgdp[-1] + 0.54578 * grprtrdp = (13.4325)(1.89369)7E+07 * wtrwdpx/totwage - 4082829 + (8.85683) (7.58174)Std Err 50552.0 LHS Mean 4835754 1E+11Sum Sq 0.9962 F 4, 43 2801.67 0.9958 R Sq R Bar Sq D.W.(4)2.0463 1.2751 D.W.(1)AR 0 =+ 0.75532 * AR 1

(7.58591)

NON-MANUFACTURING EMPLOYMENT

Cochran-Orcutt QUARTERLY data for 40 periods from 1980Q1 to 1989Q4 Date: 2 JAN 1991

em01beax

0.01277 * grpagdp - 2660.22 * wrwaff.8/uckag.8 = (14.0986) (2.83198)-64.4620 * lpag[-3] + 8604.71(1.26575)(5.56201)332.962 12833.6 Sum Sq 3880219 Std Err LHS Mean 0.9874 R Bar Sq 0.9859 F 4, 35 683.096 R Sq D.W.(1) 1.4858 D.W.(4) 2.0144

 $AR_0 = + 0.70255 * AR_1$ (5.27002)

*:	Cochran-Orcutt QUARTERLY data for 40 periods from 1980Q1 to 1989Q4 Date: 2 JAN 1991
have been been been been been been been be	em10beax = 0.00004 * ndpsay/pdice - 92.5360 * rwr14 + 1775.19 (4.80682) (1.23985) (4.07083)
and the second sec	Sum Sq 136622 Std Err 61.6040 LHS Mean 2784.76 R Sq 0.8860 R Bar Sq 0.8765 F 3, 36 93.2636 D.W.(1) 1.9030 D.W.(4) 2.1661
يا المسير مسيا	$AR_0 = + 0.58292 * AR_1$ (3.88328)
and have made and the	
1999-1999 - 1999-1999 - 1999-1999 - 1999-1999 - 1999-1999-1999-1999-1999-1999-1999-1999-1999-1999-1999-1999-19	
and a second	
non	
and the second second	
John Health - La A	

ſ

ý.

Super- Stanto

and an and the second

IN PROPAGA

•

Ordinary Least Squares QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 15 JAN 1991

em15beax

0.01052 * grpcondp - 73793.0 * ahecc\$./uckcom. = (3.52869)(25.4279)- 415.108 * intmort[-6] - 618.830 * lpcon[-8] + 30144.2 (6.70452)(5.23854) (3.91931) 44084.7 10E+0 Std Err 1488.56 LHS Mean Sum Sq R Bar Sq D.W.(4) 300.883 0.9655 0.9623 F 4, 43 R Sq 1.4041 2.2578 D.W.(1)

(

Cochran-Orcutt QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 29 DEC 1990 em16beax 0.00224 * grpcondp - 45106.5 * ahecc\$/uckcom = (2.83518)(5.14985) - 188.217 * intprime[-3] + 17246.0 (5.71912)(2.33742)Std Err 765.105 LHS Mean 20332.9 3E+07 Sum Sq F 4, 51 91.2959 0.8678 R Bar Sq 0.8775 R Sq 1.1174 D.W.(1) 2.2188 D.W.(4) $AR 0 = + 0.71644 * AR_1$ (6.91305)

Ordinary Least Squares QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 15 JAN 1991

em17beax

.

=	0.00828 * (5.59733)	grpcondp	- 126121 (4.84783	* ahecc\$.4)	/uckcom.4
	- 661.560 (4.00907)	* lpcon[-8]] + 0.9613 (6.9543	4 * em15be 3)	ax + 37962.7 (6.84535)
Sum Sq R Sq D.W.(1)	1E+08 0.9863 1.3897	Std Err R Bar Sq D.W.(4)	1741.22 0.9851 1.7807	LHS Mean F 4,43	76891.3 775.385

Ordinary Least Squares QUARTERLY data for 44 periods from 1979Q1 to 1989Q4 Date: 2 JAN 1991 em4147beax 0.00140 * grptpudp - 6305.98 * ahergt\$/ucktpu = (1.77282)(27.0363) - 26.0283 * lptrn[-4] + 88.6240 (0.12002)(1.61838)5202.24 1486013 192.744 LHS Mean Sum Sq Std Err F 3,40 510.285 R Sq 0.9745 R Bar Sq 0.9726 0.7170 1.5307 D.W.(4)D.W.(1)

1

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 2 JAN 1991

em42beax

0.00064 * grpdp - 710.838 * ahergt\$.16/ppi.16 = (2.44973) (58.0610) - 18050.2 * tranrat + 30303.8 (4.70869) (8.20325)Std Err 627.304 LHS Mean 46818.2 2E+07 Sum Sq 0.9903 F 5, 42 962.537 RSq 0.9913 R Bar Sq 2.0527 D.W.(4) 1.9138 D.W.(1) $AR 0 = + 0.45703 * AR_1 - 0.38940 * AR_2$ (3.14034) (2.68613)

Ordinary Least Squares QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 2 JAN 1991 em45beax = 0.00043 * grpdp - 39340.9 * ahergt\$.10/ucktpu.10 (37.8514) (4.67577)

> - 18593.0 * tranrat[-4] + 4613.06 (3.38365) (0.78512)

1.000

LHS Mean 9193.52 Std Err 656.040 2E+07 Sum Sq F 3,44 683.125 R Bar Sq 0.9775 0.9790 R Sq 0.4932 D.W.(4) 1.8092 D.W.(1)

Ordinary Least Squares QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 2 JAN 1991

em48beax

= 0.00011*grpdp -39394.9 * ahergc48\$./uck48.- 35.7003 * lp48[-2] (3.63333) (9.49107) (1.49273)

- 2453.29 * d8485 - 2499.49 * dstrk + 23586.8 (15.5003) (5.90230) (59.3716)

Sum Sq5890670Std Err374.505LHS Mean22932.0R Sq0.8834R Bar Sq0.8695F 5, 4263.6137D.W.(1)1.3002D.W.(4)2.6341

Ordinary Least Squares QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 2 JAN 1991 em49beax 0.00048*grpdp - 2806.25*ahergu49\$.6/ppi.6 - 83.5149*1p49[-6] = (1.56640)(8.51814)(5.83797)+ 37477.4 (7.87729)27390.8 6E+07 Std Err 1146.42 LHS Mean Sum Sq 0.6997 F 3, 44 37.5006 0.7189 R Bar Sq R Sq 0.5197 D.W.(4)1.7558 D.W.(1)

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 3 JAN 1991

em5051beax

0.00114 * rgrpmfgdp[-1] + 0.00701 * grprtrdp[-2] = (6.86283) (3.90477)235295 * ahewr\$/uckcom + 56224.9 ----(4.49136)(14.1889)1358.46 LHS Mean 112837 Std Err Sum Sq 8E+07 F 5, 42 668.689 R Bar Sq 0.9861 R Sq 0.9876 D.W.(4) 2.1361 1.7961 D.W.(1)

 $AR_0 = + 0.77538 * AR_1 - 0.24517 * AR_4$ (8.13420) (2.45308)

Integrated Resource Planning

Cochran-Orcutt QUARTERLY data for Date: 3 JAN 1991	48 periods from	1978Q1 to 1989Q	24
em52beax			
= 2.04482 * (3.44192)	(nddpsay.2/pdic	:e.2)/sapop.2	
+ 0.03294 * (1.87726)	em15beax+em17be	ax - 906.774 * (2.54230)	ahewr\$/ppi
+ 2.19943 * (2.00726)	sapop[-1] - 888 (2.6	3.69 30420)	
Sum Sq 3528610 R Sq 0.9881 D.W.(1) 2.0518	Std Err293.3R Bar Sq0.98D.W.(4)1.94	66 LHS Mean 63 F 6,41 64	17273.6 566.357
$AR_0 = + 0.44624 * (3.80784)$	AR_1 - 0.22400 (1.90784)	* AR_4	

a barrent a sur a su A sur a s A sur a s

~

Section and the second second

1 200 - 100

and the second

. . . .

Cochran-Orcutt QUARTERLY data for 40 periods from 1980Q1 to 1989Q4 Date: 3 JAN 1991 em53beax 0.00144 * (nddpsay.4/pdice.4) - 169693 * ahewr\$./uckcom. = (2.27825)(6.10270)+ 6880.31 (0.72010)LHS Mean 52282.2 Std Err 1137.88 Sum Sq 5E+07 0.9641 F 3, 36 350.502 0.9669 R Bar Sq R Sq D.W.(4) 2.1356 D.W.(1)1.8877 $AR_0 = + 0.85736 * AR_1$

Integrated Resource Planning

(11.6435)

Cochran-Orcutt QUARTERLY data for 44 periods from 1979Q1 to 1989Q4 Date: 3 JAN 1991 em54beax 0.00068 * (nddpsay.10/pdice.10) + 51.9194 * sapop = (3.70239)(1.70941)180879 102802 * ahewr\$/uckcom ------(3.80834)(1.89423)LHS Mean 62237.2 872.631 3E+07 Std Err Sum Sq F 4, 39 1135.75 0.9915 R Bar Sq 0.9906 R Sq 1.9518 D.W.(4) 2.4182 D.W.(1) $AR_0 = + 0.82823 * AR_1$ (12.0142)

QUARTERLY data for 36 periods from 1981Q1 to 1989Q4 Date: 3 JAN 1991

em55beax

4.62189 * (nddpsay.1/pcemvp.1)/sapop.1 + 16.0866 * newcar[-6] = (5.01701)(22.5187)- 59068.4 * ahewr\$.5/uckcom.5 - 5740.86 (1.92026)(4.35648)LHS Mean 40483.4 Std Err 737.265 2E+07 Sum Sq . F 3, 32 595.345 0.9807 0.9824 R Bar Sq R Sq D.W.(4) 2.0968 D.W.(1)1.4840

Integrated Resource Planning

	Cochran-Orcutt QUARTERLY data for 64 periods from 1974Q1 to 1989Q4 Date: 4 JAN 1991
-)	em56beax
entries and	<pre>= 1.71518 * (nddpsay.2/pcecas.2)/sapop.2 (4.16465)</pre>
	- 1124.53 * ahewr\$.8/ppi.8 + 13925.1 (1.68350) (2.86219)
i hourse	Sum Sq1E+07Std Err420.733LHS Mean20617.5R Sq0.9830R Bar Sq0.9821F3, 601154.59D.W.(1)2.1653D.W.(4)1.5896
100 M	$AR_0 = + 0.94842 * AR_1$ (20.9852)
1 And an American	
and the second s	
and the second s	
and the second se	
· · · · ·	
And the second se	
<i>y</i>	
<i>}</i>	
4	
[

T T

Cochran-Orcutt QUARTERLY data for 64 periods from 1974Q1 to 1989Q4 Date: 4 JAN 1991

em57beax

-	0.97207 * (5.14295)	(nddpsay.)	l/pcefhe.1))/sapop.1 -	+ 5.68944 * (2.77663)	sapop[-6]
	- 17469.0 * (1.41041)	ahewr\$.14,	uckcom.14	- 14087.3 (1.99280))	
Sum Sq R Sq D.W.(1)	9094950 0.9895 1.9102	Std Err R Bar Sq D.W.(4)	392.622 0.9888 2.0082	LHS Mean F 4, 59	16854.0 1390.49	
AR_0 =	+ 0.63369 * (6.17595)	AR_1				

Internet and the second second	Cochran-Orcutt QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 4 JAN 1991
*	em58beax
•	= 0.00132 * (nddpsay.4/pcefab.4) + 77.7701 * sapop (4.97632) (9.8789)
	- 136883 * ahewr\$.16/uckcom.16 - 267527 (3.25847) (10.7396)
	Sum Sq8E+07Std Err1277.55LHS Mean100775R Sq0.9976R Bar Sq0.9974F4,515315.27D.W.(1)1.9839D.W.(4)2.4758
	$AR_0 = + 0.56062 * AR_1$ (5.00547)
:	

[|

Same and the second

Shine mar nor ogo

Smannyamutapper

- Stanson and

Concerning of

Constraints of the second

S. Contraction of the second

Kannand

ferrowers and

An and a second s

.

Cochran-Orcutt QUARTERLY data for 56 periods from 1976Q1 to 1989Q4 Date: 4 JAN 1991

em59beax

4.43357 * (nddpsay.2/pdice.2)/sapop.2 + 15.3002 * sapop[-8] . = (3.55631)(3.77399) - 3727.18 * ahewr\$.6/ppi.6 - 31122.3 (2.03375)(2.42648)755.141 LHS Mean 47905.0 3E+07 Std Err Sum Sq 0.9854 F 4, 51 928.082 R Sq 0.9864 R Bar Sq D.W.(1) D.W.(4)2.4724 1.6392 $AR_0 = + 0.65013 * AR_1$ (6.04273)

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 5 JAN 1991 em6061beax 0.00138 * ndpsay/pdice - 86741.2 * ahefi\$.4/uckcom.4 = (6.15795)(37.3451)- 173.133 * lpfir[-4] + 13064.8 (1.84121)(2.52140)1E+07 Std Err 563.369 LHS Mean 54190.6 Sum Sq 0.9953 F 5, 42 1976.96 0.9958 R Bar Sq R Sq 2.2561 D.W.(4) 1.8824 D.W.(1) $AR_0 = + 0.83624 * AR_1 - 0.36448 * AR_4$ (9.04854) (3.85270)

Ordinary Least Squares QUARTERLY data for 44 periods from 1979Q1 to 1989Q4 Date: 5 JAN 1991

em6267beax

0.00067 * ndpsay.1/pdice.1 - 13531.4 * ahefi\$.6/uckcom.6 = (2.09069) (24.0057) - 164.826 * lpfir[-10] + 1612,08 (0.28052)(3.08766) 397.901 6333010 Std Err LHS Mean 16974.5 Sum Sq R Bar Sq F 3,40 0.9909 1565.77 0.9916 R Sq D.W.(1) 1.4173 D.W.(4) 2.3399

Cochran-Orcutt QUARTERLY data for 72 periods from 1972Q1 to 1989Q4 Date: 5 JAN 1991 em63beax 4.34084 * (ndpsay/pdice)/sapop - 1177.28 * ahefi\$/ppi = (2.48602) (13.6919) - 63.7379 * lpfir[-1] - 2629.57 (0.47849)(1.26930)27118.0 685.675 LHS Mean 3E+07 Std Err Sum Sq 0.9797 0.9785 F 4, 67 806.981 R Bar Sq R Sq D.W.(4) 2.0634 1.7882 D.W.(1) $AR 0 = + 0.69728 * AR_1$ (8.53345)

Cochran-Orcutt QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 5 JAN 1991

em65beax

0.00039 * (ndpsay.1/pdice.1) + 10.0862 * sapop[-8] = (2.56045)(3.70694)- 78.7873 * lpfir[-1] - 32482.9 (2.54285)(2.47681)3864674 Std Err 299.793 LHS Mean 20572.0 Sum Sq F 4, 43 2053.78 R Sq 0.9948 R Bar Sq 0.9943 D.W.(4) 2.2185 D.W.(1)1.9450 $AR_0 = + 0.81584 * AR_1$

 $AR_0 = + 0.81584 ^ AR_$ (7.96141)

Ordinary Least Squares QUARTERLY data for 32 periods from 1982Q1 to 1989Q4 Date: 6 JAN 1991 em70beax 0.05757 * (ndpsay.1/pdices.1) + 18.4683 * sapop[-6] = (6.58056) (7.56059) - 30272.4*ahesvot\$.4/uckcom.4 - 492.992 * lpser[-8] - 67792.7 (7.99819)(2.06164) (4.25128)23305.5 Sum Sq 1935010 Std Err 267.707 LHS Mean F 4, 27 0.9948 0.9941 1300.67 R Bar Sq R Sq 1.8721 D.W.(4) 1.5062 D.W.(1)

Cochran-Orcutt QUARTERLY data for 28 periods from 1983Q1 to 1989Q4 Date: 6 JAN 1991

em72beax

32.8195 * sapop[-1] - 100809 * ahesvot\$.8/uckcom.8 = (4.61229) (9.9839)- 1403.05 * lpser[-12] - 68816.5 (3.98177)(2.42094)578.047 LHS Mean 30396.3 Sum Sq 7351037 Std Err 0.9235 F 5, 22 66.1699 0.9377 R Bar Sq R Sq D.W.(4) 2.2723 D.W. (1) 1.9771 $AR_0 = + 0.56730 * AR_1 - 0.41193 * AR_4$ (3.61850)

Integrated Resource Planning

(4.29659)

Page 122

Ordinary Least Squares QUARTERLY data for 48 periods from 1978Q1 to 1989Q4 Date: 6 JAN 1991 em7389beax 0.00311 * grpdp - 359993 * ahesv73\$.4/uckcom.4 = (10.2622) (3.44976)- 8612.89 * lpser[-8] + 0.18081 * ndpsay.4/pdices.4 + 107308 (1.85736)(3.04519)(2.31222)3829.05 LHS Mean 143377 Std Err 6E+08 Sum Sq F 4, 43 1146.17 Ř Bar Sq 0.9898 0.9907 R Sq 1.3696 D.W.(4)1.3378 D.W.(1)

Cochran-Orcutt QUARTERLY data for 36 periods from 1981Q1 to 1989Q4 Date: 16 JAN 1991.

em7576beax

0.12021 * (nddpsay.1/pdices.1) = (18.0500)- 17244.0 * ahesvot\$.12/uckcom.12 + 6.78759 * newcar[-10] (2.79239) (1.25048)- 20549.9 (8.53178)27463.7 LHS Mean Sum Sq 8631424 Std Err 527.668 0.9831 R Bar Sq 0.9809 F 4, 31 450.982 R Sq 1.7833 D.W.(4) 2.2359 D.W.(1) $AR 0 = + 0.53150 * AR_1$ (3.02509)

and the second s	Cochran-Orcutt QUARTERLY data for Date: 6 JAN 1991	48 periods	from 1978	3Q1 to 1989	Q4
	em7884beax				
	= 0.04672 * (5.08223)	(nddpsay.	1/pdices.1	L).	
	- 17056.8 * (1.53463)	ahesvot\$.	14/uckcom.	.14 - 1047. (2.809	51 * lpser[-2] 37)
9	+ 5141.96 * (7.89131)	d8889 + 25 (2	9334.2 .79474)		
	Sum Sq 1E+07 R Sq 0.9748	Std Err R Bar Sq	587.548 0.9718	LHS Mean F 5, 42	20277.7 324.348
The second	$AR_0 = + 0.49985 *$	AR_1	4.3343		
Provent	(0+20070)				

•

.

1000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -

Ser-inversion

Survey & Streams

State of the second

anggawwaggaa

South Law Street Street

Service and Service Se

1

Cochran-Orcutt QUARTERLY data for 40 periods from 1980Q1 to 1989Q4 Date: 16 JAN 1991

em80beax

0.11527 * (nddpsay.8/pdices.8) + 121.024 * sapop[-4] _ (4.60512)(1.83886.) - 4510.38 * ahesv80\$.4/ppi.4 -410751 (4.86260)(1.43934)1292.99 120658 Sum Sq 6E+07 Std Err LHS Mean 0.9920 R Bar Sq 0.9911 F 4, 35 1087.84 R Sq 1.8643 D.W.(4) 2.3381 D.W.(1) $AR 0 = + 0.83435 * AR_1$

Integrated Resource Planning

(11.1057)
Cochran-Orcutt QUARTERLY data for 40 periods from 1980Q1 to 1989Q4 Date: 6 JAN 1991 em8183beax 0.12774 * (nddpsay.4/pdices.4)+19.4926 * sapop[-1] - 95166.2 = (6.60591)(3.55450)(4.92050)LHS Mean 38379.4 Std Err .454.154 Sum Sq 7218950 F 4, 35 1816.63 0.9952 R Bar Sq 0.9947 R Sq D.W.(4) 2.3560 2.1220 D.W.(1) $AR_0 = + 0.81592 * AR_1 - 0.19999 * AR_4$ (7.19314)(1.92523)

Ordinary Least Squares QUARTERLY data for 32 periods from 1982Q1 to 1989Q4 Date: 5 JAN 1991

em82beax

=	0.07226 * (13.0140)	(ndpsay.4	/pdices.4)	+ 37.6410 (21.3883	* sapop[-12])
	- 192.440 * (1.58840)	ahesvot\$./ppi 147578 (28.9478)			
Sum Sq R Sq D.W.(1)	2909154 0.9976 0.5956	Std Err R Bar Sq D.W.(4)	322.333 0.9973 2.1300	LHS Mean F 3, 28	43403.2 3817.62

Cochran-Orcutt QUARTERLY data for 32 periods from 1982Q1 to 1989Q4 Date: 6 JAN 1991 emfarbeax 0.00218 * grpfdp[-4] - 1194.14 * lpag + 79702.9 = (3.38687) (9.8594)(1.17985)2701.76 LHS Mean 51227.7 Std Err 2E+08 Sum Sq F 3, 28 0.7017 25.3073 0.7306 R Bar Sq R Sq 1.9854 D.W.(1) 2.0828 D.W.(4) $AR_0 = + 0.52364 * AR_1$ (3.27283)

1

Cochran-Orcutt QUARTERLY data for 60 periods from 1975Q1 to 1989Q4 Date: 6 JAN 1991

emgovbeax

R Sq 0.9950 R Bar Sq 0.9946 F 4, 55 2737.79 D.W.(1) 1.9847 D.W.(4) 2.4896

 $AR_0 = + 0.84072 * AR_1$ (13.4570)

NON-MANUFACTURING VARIABLE LIST REGIONAL ECONOMY

1

and a state of the second

Sumary and the second second

	AGWDPX	11	Wages for the Agricultural Services industry, Duke Power service area, nominal.			
	CONWDPX	=	Wages for the Construction industry, Duke Power service area, nominal.			
	FWDPX	=	Wages for the Farm industry, Duke Power service area, nominal.			
	FIRWDPX	-	Wages for the Finance, Insurance and Real Estate industries, Duke Power service area, nominal.			
	GOVWDPX	=	Wages for the Government sector, Duke Power service area, nominal.			
	MINWDPX	=	Wages for the Mining industry, Duke Power service area, nominal.			
	RTRWDPX	=	Wages for the retail industry, Duke Power service area, nominal.			
	SERWDPX	=	Wages for the Service industry, Duke Power service area, nominal.			
	TPUWDPX	=	Wages for the Transportation and Public Utilities industry, Duke Power service area, nominal.			
:	WTRWDPX	-	Wages for the Wholesale industry, Duke Power Service area, nominal.			
	GRPAGDP		Real Gross Regional Product for the Agricultural Services industry, Duke Power service area.			
	GRPCONDP	=	Real Gross Regional Product for the Construction industry, Duke Power service area.			
	GRPFDP	=	Real Gross Regional Product for the Farm industry, Duke Power service area.			
	GRPFIRDP	=	Real Gross Regional Product for the Finance, Insurance, and Real Estate industry, Duke Power service area.			
	GRPGOVDP		Real Gross Regional Product for the Government sector, Duke Power service area.			
	GRPMINDP	=	Real Gross Regional Product for the Mining industry, Duke Power service area.			

Real Gross Regional Product for the Service industry, GRPSERDP = Duke Power service area. Real Gross Regional Product for the Transportation and GRPTPUDP \equiv Public Utilities industry, Duke Power service area. Wholesale Real Gross Regional Product for the GRPWTRDP = industry, Duke Power service area. Real Gross Regional Product , total of manufacturing GRPDP = and non-manufacturing output, Duke Power service area. Duke Power service area employment, Farm industry. EMFARBEAX = Duke Power service area employment, Government sector. EMGOVBEAX =Duke Power service area employment, Agricultural EM01BEAX = Services industry. Duke Power service area employment, Mining industry. EM10BEAX = employment, Building EM15BEAX Duke Power service area = Construction, general contractors. Duke Power service area employment, Heavy Construction EM16BEAX = industry. Duke Power service area employment, Construction -EM17BEAX = Special Trade Contractors. EM4147BEAX employment, Misc. Duke Power service area = Transportation services. EM42BEAX = Duke Power service area employment, Motor Freight Transportation. EM45BEAX Duke Power employment, Air = service area Transportation. EM48BEAX Duke Power service area employment, Communications. = EM49BEAX Duke Power service area employment, Public Utilities. -EM5051BEAX = Duke Power service area employment, Wholesale. EM52BEAX Duke Power service area employment, Retail - Building ----Materials, Hardware, Garden Supply. EM53BEAX = Duke Power service area employment, Retail - General Merchandise Stores.

Duke Power service area.

Real Gross Regional Product for the Retail industry,

=

GRPRTRDP

(T

7			
	EM54BEAX	=	Duke Power service area employment, Retail - Food Stores.
* gans 36070030005	EM55BEAX	=	Duke Power service area employment, Retail - Auto Dealers, Gas Stations.
	EM56BEAX	=	Duke Power service area employment, Retail - Apparel.
No. productive Transfer Acres	EM57BEAX	=	Duke Power service area employment, Retail - Home Furnishings.
	EM58BEAX	=	Duke Power service area employment, Retail - Eating and Drinking Places.
******	EM59BEAX	=	Duke Power service area employment, Retail - Miscellaneous Retail.
	EM6061BEAX	#	Duke Power service area employment, Banks and Credit Institutions.
A Martin Barran A an afficial	EM6267BEAX	=	Duke Power service area employment, Security and Commodity Brokers.
	EM63BEAX		Duke Power service area employment, Insurance industry.
	EM65BEAX	=	Duke Power service area employment, Real Estate industry.
	EM70BEAX	=	Duke Power service area employment, Hotels and Motels.
	EM72BEAX	=	Duke Power service area employment, Personal Services.
	EM7389BEAX	=	Duke Power service area employment, Business Services.
	EM7576BEAX	=	Duke Power service area employment, Repair Services.
	EM7884BEAX	=	Duke Power service area employment, Amusement, Motion Pictures and Museums.
	EM80BEAX	=	Duke Power service area employment, Medical industry.
	EM82BEAX	#	Duke Power service area employment, Education.
	WRWAFF	=	Average weekly compensation per employee, Agricultural Services industry, national.
•	AHECC\$	=	Average hourly earnings, Construction industry, national.
	AHEFI\$	=	Average hourly earnings, Finance, Insurance, and Real Estate, national.

-

Mar Anna Martin

A President

and the second

and the second s

maximum

All and a second second

Salation and the

.

AHEMG14\$	-	Average hourly earnings, Mining, Non-metallic minerals, national.					
AHEWR\$	=	Average hourly earnings, Wholesale and Retail, national.					
AHESER	=	Average hourly earnings, Services, national.					
WRWGOV	#	Average weekly compensation per employee, Government, national.					
AHERGT\$	=	Average hourly earnings, Transportation and Public Utilities, national.					
EMFIRBEAX	=	Duke Power service area employment, Finance, Insurance, Real Estate.					
EMRTRBEAX	=	Duke Power service area employment, Retail.					
EMSERBEAX	-	Duke Power service area employment, Services.					
EMTPUBEAX	=	Duke Power service area employment, Transportation and Public Utilities.					
D82	=	Dummy variable, equal to 1 for 1982, 0 elsewhere.					
D8689	=	Dummy variable, equal to 1 for 1986 - 1989, O elsewhere.					
D85	=	Dummy variable, equal to 1 for 1985, 0 elsewhere.					
TOTWAGE		Total wages, Duke Power service area.					
GPOCON82		Gross product of the construction industry, national.					
WB	=	Total compensation, national.					
SAPOP	=	Duke Power service area population.					
NDPSAY	=	Nominal personal income, Duke Power service area.					
NDDPSAY	Ŧ	Nominal disposable income, Duke Power service area.					
PDICE	=	Personal consumption deflator.					
RGRPMFGDP	<u></u>	Real gross regional product for the manufacturing sector, Duke Power service area.					
LPAG		Labor productivity for the Agricultural Services industry, national.					
LPGOV	=	Labor productivity for the government sector, national.					

Í í

	LPCON	-	Labor productivity for the construction industry, national.				
\cap	LPTRN	=	Labor productivity for the transportation industry, national.				
	LP48	=	Labor productivity for the Communications industry, national.				
	LP49	,	Labor productivity for the Public Utilities industry, national.				
	LPFIR	=	Labor productivity for the Finance, Insurance and Real Estate industries, national.				
	LPSER	=	Labor productivity for the Services industries, national.				
and a second sec	UCKAG	=	User Cost of capital, Agricultural Services industry, national.				
Contraction of the second seco	UCKCOM	=	User Cost of capital, commercial, national.				
	UCK48	= .	User Cost of capital, Communications industry, national.				
	UCKTPU	. =	User Cost of capital, Transportation and Public Utilities industry, national.				
	DSTRK	=	Strike dummy variable.				
INTPRIME		=	Real prime interest rate.				
	INTMORT	=	Real mortgage interest rate, national.				
Address of the state of the sta	PPI		Producers Price Index.				
K	TRANRAT	=	Real cost of transportation services.				
n	D8485	=	Dummy variable, equal to 1 for 1984-1985, 0 elsewhere.				
A second s	PCEMVP	=	Personal Consumption Expenditures deflator for motor vehicles and parts.				
	NEWCAR	=	New U.S. auto sales.				
and the second sec	RWR14	=	Real average hourly wage rate, Nonmetallic mining industry, national.				
And the second sec	AHERGC48\$	=	Average hourly earnings, Communications industry, national.				

.

in the Martine

a and a state of the state of the

٠

-

.

.

.

AHERGU49\$	=	Average hourly earnings, Public Utilities industry, national.
PCECAS	-	Personal consumption expenditure deflator, clothing and shoes.
PCEFHE	=	Personal consumption expenditure deflator, furniture and household equipment.
PCEFAB	=	Personal consumption expenditure deflator, food and beverages.
PDICES	=	Personal consumption expenditure deflator, services.
D8889	=	Dummy variable, equal to 1 for 1988-1989, 0 elsewhere.
AHESVOT\$	= '	Average hourly earnings, Other Services, national.
AHESV73\$	=	Average hourly earnings, Business services, national.
AHESV80\$	=	Average hourly earnings, health services, national.

D. OTHER INCOME COMPONENT EQUATIONS

Dividends, Interest, and Rent Transfer Payments Personal Contribution to Social Insurance Residence Adjustment

Equations

DIVIDENDS, INTEREST, AND RENT Log(Dividends, Interest and Rent for DPSA) = .12823*log(Personal Dividend Income for USA) + .86947*log(Personal Interest Income for USA) + .03962*log(Rental Income of Persons for USA) + 9.7906 AR TERM = .91274 * AR(1)R SQR = .9992 TRANSFER PAYMENTS Log(Transfer Payments for DPSA) = 1.02384*log(Transfer Payments to Persons for USA) + .02873*log(Ratio of Unemployment of DPSA to USA) + 9.28155 AR TER: = .74833*AR(1) + .59654*AR(4) - .61393*AR(5) R SQF = .9997 PERSONAL CONTRIBUTIONS TO SOCIAL SECURITY Log(Personal Contributions to Social Security for DPGA) = .98176*log(Personal contributions to social insurance for USA) .90052*log(Ratio of wages in DPSA to wages for USA) + 1.05800 AR TERM = .76738*AR(1) + .71586*AR(4) - .70595*AR(5) R SQR = .9998RESIDENCE AJUSTMENT Residence Adjustment= -.02434*(Wages in DPSA) + 318119. AR TERM = .90459*AR(1) - .09359*AR(8) + .10213*AR(12) R SQR = .9990

E. ENERGY & CUSTOMERS

General Service Industrial Residential Other Sales

ň

. . . .

· · · · · · · · · · · ·

Annound Annound An

1 voice -

.

. · · · • .

· · . . •

.

. . .'

.

•

GENERAL SERVICE

Cochran-Orcutt QUARTERLY data for 28 periods from 1984Q1 to 1990Q4 Date: 15 APR 1991

bckpc

= 0.31703 * hdh + 0.20503 * cdh + 387.081(13.1906) (5.09262) (9.41397)

Sum Sq39605.5Std Err41.4967LHS Mean719.694R Sq0.9570R Bar Sq0.9495F4, 23127.969D.W.(1)1.5123D.W.(4)1.3727

 $AR_0 = + 0.35654 * AR_1 + 0.35131 * AR_4$ (2.42231) (4.01477) Ordinary Least Squares QUARTERLY data for 24 periods from 1985Q1 to 1990Q4 Date: 11 MAR 1991

gocu

D.W.(1)

0.5512

0.00158 * grpcondp - 404.651 * d1 + 601.008 * d3 = (2.23068) (3.31287) (9.07399)+ 411.851 * d4 + 3414.42 (3.53866)(2.27028)314.189 LHS Mean 12239.9 • • Sum Sq 1875577 Std Err R Bar Sq 0.8335 F 4, 19 29.7879 R Sq 0.8625

1.5442

D.W.(4)

GS91:MWH54 Ordinary Least Squares QUARTERLY data for 30 periods from 1983Q3 to 1990Q4 Date: 12 MAR 1991

mwh54

5.31977 * hdh + 64.7359 * cdh - 6496.19 * pr54[-2] = (2.53645) (18.6609) (2.11944) + 287.342 * gaspr1[-8] + 0.00314 * rdpsay + 101941 (6.36704)(1.52522)(20.7223)3E+08 Std Err 3772.11 LHS Mean 278223 Sum Sq 0.9788 F 5, 24 268.170 R Sq 0.9824 R Bar Sq 1.4873 D.W.(4) 2.0601 D.W.(1)

Ordinary Least Squares QUARTERLY data for 30 periods from 1983Q3 to 1990Q4 Date: 6 MAR 1991

mwh58

- 81.4865 * cdh 12725.6 * pr58[-2] + 462.442 * gaspr1[-4] = (4.70037) (2.18547)(38.4960) + 1.60889 * em58beax[-1] + 22991.5 (22.3159) (1.28497)3700.98 LHS Mean 208894 3E+08 Std Err Sum Sq 0.9903 R Bar Sq 0.9887 F 4, 25 636.000 R Sq
- D.W.(1) 1.9136 D.W.(4) 0.7184

. .

Ordinary Least Squares QUARTERLY data for 30 periods from 1983Q3 to 1990Q4 Date: 16 MAR 1991 mwhamu . 4.13007 * hdh + 43.5511 * cdh + 0.00201 * rddpsay # (24.0894) (4.02969) (24.1626) - 5223.29 * pramu[-2] - 6600.09 (4.97431) (0.88347)1955.93 Std Err LHS Mean 68809.5 Sum Sq 10E+0 F 4, 25 438.996 R Bar Sq 0.9837 R Sq 0.9860 D.W.(1)1.4719 D.W.(4) 1.9357

Cochran-Orcutt QUARTERLY data for 26 periods from 1984Q3 to 1990Q4 Date: 23 MAR 1991 mwhchu 25.5208 * hdh + 74.4516 * cdh + 0.00236 * rddpsay = (6.10989) (8.81199) (15.0711) - 6818.97 * prchu[-2] - 5258.11 (0.17893)(3.10276)3194.02 LHS Mean 94664.6 2E+08 Std Err Sum Sa 0.9725 F 5, 20 177.836 0.9780 R Bar Sq R Sq D.W.(1) D.W.(4) 1.4072 2.0603 $AR 0 = + 0.44244 * AR_4$ (1.94727)

Ordinary Least Squares QUARTERLY data for 31 periods from 1983Q2 to 1990Q4 Date: 28 MAR 1991 mwhoth 54.0119 * hdh + 113.691 * cdh - 54063.6 * proth[-1] = (6.51131)(7.61230) (6.49128) + 0.01088 * rdpsay + 241212 (18.9060) (4.11377)16908.7 LHS Mean 580315 Sum Sq. 7E+09 Std Err R Bar Sq D.W.(4) 0.9425 0.9501 F 4, 26 123.854 R Sq 1.8347 2.2316 D.W.(1)

Ordinary Least Squares QUARTERLY data for 30 periods from 1983Q3 to 1990Q4 Date: 22 MAR 1991

mwhrtr

= 22.	.9411 * ho	dh + 142.46	1 * cdh -	27430.5 *	prrtr[-2]
(6.4	43599)	(22.349	9)	(5.69768)	
+ 0.()0715 * rc	lpsay - 263	7.85 * int	prime + 66	397.5
(21)	.0097)	(2.0	6000)	(1.	48627)
Sum Sq R Sq D.W.(1)	1E+09 0.9866 1.8841	Std Err R Bar Sq D.W.(4)	6987.59 0.9838 1.5452	LHS Mean F 5, 24	334120 353.756

.

Nonlinear Least Squares $\left(\right)$ QUARTERLY data for 44 periods from 1980Q1 to 1990Q4 Date: 3 APR 1991 t2cu 0.31661 * rescus - 158863 = (685900) (16.8747)Sum Sq Std Err 1350.49 LHS Mean 230928 7E+07 5449.40 0.9982 R Bar Sq 0.9980 F 4, 39 R Sq D.W.(4) D.W.(1)1.5526 0.3686 $AR_0 = +1.09337 * AR_1 - 0.24367 * AR_4$ (2.21044) (12.8512) MA 0 = + 0.24842 * MA 4(1.00936)

.

Cochran-Orcutt QUARTERLY data for 50 periods from 1978Q3 to 1990Q4 Date: 9 MAR 1991 diff(gacu) 0.05384 * dggacuf - 69.9321 * gapr[-2] + 3.46705 * gaspr1[-8] ۰. (2.77335)(1.67110)(1.49446) + 114.679 * d1 + 118.322 * d4 + 265.384 (8.55916) (1.25014) (4.89668) LHS Mean 281.953 51.5213 Sum Sq 111487 Std Err F 7, 42 20.7657 0.7758 R Bar Sq 0.7385 R Sq D.W.(4) 2.0853 D.W.(1) 1.9900 $AR 0 = + 0.48430 * AR_1 + 0.33467 * AR_2$ (3.31355) (2.32053)

GACU=GACU.1+(??)

Ordinary Least Squares QUARTERLY data for 44 periods from 1980Q1 to 1990Q4 Date: 9 MAR 1991 diff(ggacu) 0.00022 * dgrpnm[-4] + 33.9628 * dsapop[-3] - 64.0861 * dintp[-4] = (1.86158)(3.06873) (2.20728) - 349.339 * d1 + 532.857 * d3 + 755.816 (2.47626) (3.57296) (4.36648) 1300.67 LHS Mean Std Err 322.594 Sum Sq 3954538 F 5, 38 R Bar Sq 17.1201 R Sq 0.6926 0.6521 D.W.(1) 1.3015 D.W.(4) 1.4711 GGACU=GGACU.1+(??)

Ordinary Least Squares QUARTERLY data for 31 periods from 1983Q2 to 1990Q4 Date: 7 MAR 1991

D.W.(4)

mwh70

D.W.(1)

23.6836 * hdh + 54.4540 * cdh + 2.66182 * em70beax -(3.87837)(22.7389)(30.2296) - 4562.17 * pr70[-1] + 352.746 * gaspr1[-8] + 0.00090 * rdpsay (2.22067)(3.12438)(2.11809)- 45957.4 (5.67371)96580.4 9E+07 Std Err 1985.55 LHS Mean Sum Sq F 6, 24 R Bar Sq 0.9878 407.194 0.9903 R Sq

1.9646

2.1268

: Alexander

Ordinary Least Squares QUARTERLY data for 30 periods from 1983Q3 to 1990Q4 Date: 14 MAR 1991 mwh80 6.80662 * hdh + 89.0797 * cdh - 11032.7 * pr80[-2] -(36.4975) (5.88817) (4.36539) + 805.250 * gaspr[-4] + 281.313 * sapop - 1050196 (25.8785) (17.8375)(4.04067) . 2E+08 Std Err 2655.97 LHS Mean 223582 Sum Sq 1115.22

mark with a

Į.

R Sq 0.9957 R Bar Sq 0.9948 F 5, 24 1115 D.W.(1) 1.3952 D.W.(4) 2.3834

Integrated Resource Planning

Page 152

Cochran-Orcutt QUARTERLY data for 28 periods from 1984Q1 to 1990Q4 Date: 16 MAR 1991

mwhed

= 22.6516 * hdh + 86.8844 * cdh + 5.31033 * em82beax + 71504.7 (5.44039) (7.32008) (1.77653)(2.75393)7303.39 Std Err LHS Mean 362814 1E+09 Sum Sq 137.791 F 4, 23 0.9599 R Bar Sq 0.9530 R Sq D.W.(4) 1.9205 2.1848 D.W.(1) $AR 0 = + 0.66481 * AR_4$

(5.36025)

Ordinary Least Squares QUARTERLY data for 30 periods from 1983Q3 to 1990Q4 Date: 16 MAR 1991 mwhoff 52.0235 * hdh + 209.761 * cdh + 0.01160 * grpdp · = (16.3941) (15.9851) (6.14630) - 46527.9 * proff[-2] + 2008.96 * gaspr[-4] - 10467.4 * intprime (4.09427)(4.16065) (1.87888) 145095 (1.21219)13932.0 LHS Mean 617378 Sum Sq 4E+09 Std Err 0.9867 R Bar Sq 0.9833 F 6, 23 285.118 R Sq 2.2264 D.W.(4) D.W.(1)1.5596

Cochran-Orcutt QUARTERLY data for 27 periods from 1984Q2 to 1990Q4 Date: 29 MAR 1991 mwhtrp 23.5789 * hdh + 45.5921 * cdh - 10635.8 * prtrp[-3] = (2.60170)(4.73415)(8.08594) + 0.00392 * grpdp - 2795.08 * intprime[-2] + 1056.01 * gaspr[-4] (2.86025) (1.76707)(9.9477) - 78166.0 . (1.39332)228380 Sum Sq 6E+08 Std Err 5643.60 LHS Mean 0.9765 R Bar Sq 0.9679 F 7, 19 112.868 R Sq D.W.(4) 2.2593 D.W.(1) 1.4484 AR 0 = -0.71104 * AR 2

(3.77284)

Ordinary Least Squares QUARTERLY data for 30 periods from 1983Q3 to 1990Q4 Date: 23 MAR 1991

mwhwtr

7.59847 * hdh + 38.0243 * cdh - 5921.58 * prwtr[-2] = (15.3951) (5.60674) (3.05403) + 416.079 * gaspr1 + 0.01970 * grpwtrdp - 7341.27 (0.34355)(8.98929) (1.73347)106994 Sum Sq 2E+08 Std Err 2730.49 LHS Mean 0.9614 F 5, 24 145.501 R Sq 0.9681 R Bar Sq 1.3716 D.W.(4) 1.7396 D.W.(1)

VARIABLE DEFINITIONS GENERAL SERVICE

BCKPC KWH per customer for the building construction customers.

HDH Heating degree hours, cycle.

CDH Cooling degree hours, cycle.

- GACU The number of electric heating customers. Rate schedule GA, plus G22 and electric heating time-of-day.
- DGGACUF Quarterly change in total general service customers, Excluding T2 & building construction customers.

GAPR Electric heating price of electricity, real.

GASPR1 The 1st quarter price of natural gas, in cents per therm, for Piedmont Natural Gas Company, real. The 1st quarter price is repeated for each quarter of the year.

D1 Dummy variable, equal to 1 in first quarter, 0 elsewhere.

D3 Dummy variable, equal to 1 in third quarter, 0 elsewhere.

D4 Dummy variable, equal to 1 in fourth quarter, 0 elsewhere.

- GGACU Total general service customers, excluding T2 and building construction customers.
- DGRPNM Quarterly change in gross regional product for nonmanufacturing in the Duke service area.
- DSAPOP Quarterly change in service area population.

DINTP Quarterly change in real prime interest rate.

- GOCU Building construction customers, plus misc., cotton gins, and T1.
- GRPCONDP Gross regional product for the construction industry in the Duke service area.

MWH54 MWH sales to food stores, sic 54.

PR54 Price of electricity for sic 54 customers, real.

RDPSAY Real personal income for the Duke Power service area.

MWH58 MWH sales to eating & drinking places, sic 58.

Page 157

PR58 Price of electricity for sic 58 customers, real. Employment in sic 58 industry for the Duke service area. EM58BEAX MWH70 MWH sales to the hotel/motel industry, sic 70, real. Employment in the sic 70 industry, Duke service area. EM70BEAX **PR70** Price of electricity for sic 70 customers, real. MWH sales to the medical industry, sic 80. MWH80 **PR80** Price of electricity for sic 80 customers, real. Real quarterly price of natural gas, cents per therm, for GASPR Piedmont Natural Gas Company. SAPOP Duke Power service area population. **MWHAMU** MWH sales to the amusement industry. SIC 78, 79, 84. RDDPSAY Real disposable income for the Duke Power service area. PRAMU Price of electricity for the amusement customers, real. MWHCHU MWH sales to churches, SIC 86. PRCHU' Price of electricity for churches, real. MWHED MWH sales to education industry, SIC 82, 83. EM82BEAX Employment in the education industry for the Duke area. MWHOFF MWH sales to offices. GRPDP Gross regional product for the Duke Power service area. PROFF Price of electricity for offices, real. INTPRIME Prime interest rate, real. MWH sales to the other parts of general service that are MWHOTH not forecasted separately. PROTH Price of electricity to the other customers. MWHRTR MWH sales to the retail industry. PRRTR Price of electricity to the retail industry, real. MWHTRP MWH sales to the transportation industry. PRTRP Price of electricity for the transportation industry.

MWHWTR MWH sales to the wholesale industry.

PRWTR Price of electricity for the wholesale customers, real.

GRPWTRDP Gross regional product for the wholesale industry in the Duke service area.

T2CU T2 customers.

RESCUS Residential customers.

NOTE: In the models, a variable that has a point followed by a number is lagged by that number. For example, the variable GASPR.4 is the variable GASPR lagged 4 periods.

-

INDUSTRIAL

MFGSLS91:GWH20 Cochran-Orcutt QUARTERLY data for 61 periods from 1975Q4 to 1990Q4 Date: 21 FEB 1991 gwh20 0.00013 * rgrp20dp + 0.00046 * cdh + 14.0500 * rprng2073 = (2.87414)(8.87229) (10.5780)- 6.17463 * d202 - 12.9165 * q1 + 18.4327 * q3 - 10.0450 (8.12498) (5.97473) (0.65669) (1.33103)2003.86 Std Err 6.2077 LHS Mean 174.193 Sum Sq R Sq R Bar Sq 0.9793 F 8,52 355.923 0.9821 1.9451 D.W.(4)1.6292 D.W.(1) $AR_0 = + 0.61168 * AR_1 - 0.21072 * AR_2$ (4.62314)(1.55891)sales, gwh, food and food products, DPSA. gwh20 = rgrp20dp = real GRP, food and food products, DPSA. cdh = cooling degree hours. real price of natural gas deflated by pgpo20. rprng2073= = d202 binary variable. = quarterly binary variable. **q**1 = quarterly binary variable. α3

MFGSLS91:GWH22 Cochran-Orcutt QUARTERLY data for 54 periods from 1977Q3 to 1990Q4 Date: 21 FEB 1991 diff(gwh22) = 0.00005 * diff(rgrp22dp) (1.56798)- 65.9186 * diff(texpr.1/(pgpo22.1/100)) - 0.00990 * diff(hdh) (14.9364)(1.67350)+ 73.1525 * diff(rprngdp22.11) + 0.18368 (3.37072)(0.03440)LHS Mean 62.3909 -1.2198Sum Sq 186846 Std Err 0.9404 R Bar Sq 0.9341 F 5, 48 151.343 R Sq D.W.(4) 1.9750 D.W.(1) + 1.9635AR 0 = -0.68095 * AR 6(6.00901)

gwh22=sales, gwh, textile mill products, DPSA.rgrp22dpreal grp, textile mill products, DPSA.pgpo22deflator for textile mill products.hdh=rprngdp22=price of natural gas deflated by pgpo22.
MFGSLS91:GWH24 Nonlinear Least Squares QUARTERLY data for 58 periods from 1976Q3 to 1990Q4 Date: 27 FEB 1991 gwh24 0.00011 * rgrp24dp + 0.00007 * hdh + 7.07212 * rprngdp2455 = (1.97043) (3.26751)(8.31388)+ 1.54909 + q2 - 46.9017(13.6018)(1.27687)LHS Mean 59.9771 Res Mean Sum Sq 841.749 Std Err 4.0416 0.8445 %RMSE 0.9592 R Bar Sq 0.9525 F 8, 49 143.997 R Sq 20.1991 D.W.(4)D.W.(1) 1.7454 1.8775 + 0.31761 * AR_2 + 0.25148 * AR 5 AR 0 =(1.88093)(1.66479)+ 0.60422 * MA_1 + 0.35361 * MA_4 MA 0 =(4.18047)(2.43031)sales, gwh, lumber and wood products, DPSA. gwh24 = real grp, lumber and wood products, DPSA. rgrp24dp = heating degree hours. hdh = rprngdp2455= price of nat. gas deflated by pgpo24. quarterly binary variable. **q**2 =

MFGSLS91:GWH26 Cochran-Orcutt QUARTERLY data for 50 periods from 1978Q3 to 1990Q4 Date: 27 FEB 1991 qwh26 0.00035 * rgrp26dp + 0.00037 * cdh + 22.4626 * rprngdp26144 = (3.36569) (9.28569) (1.28208)- 52.1101 * oiefpr/(pgpo26/100) - 13.1016 * q1 - 6.78961 * q2 (6.35673)(1.95118) (1.45500)+ 75.2000 (2.29854)Std Err 17.7005 LHS Mean 317.185 Sum Sq 12219.1 F 10, 39 84.5349 0.9559 R Bar Sq 0.9446 R Sq D.W.(1) 1.9190 D.W.(4) 1.7755 $AR 0 = + 0.57670 * AR 1 + 0.28587 * AR 2 - 0.34796 * AR_3$ (2.02733) (1.67158)(3.91246)- 0.16586 * AR 5 (1.21022)DPSA

gwiizo -	-	sates, gwn, paper and paper produces, broke
rgrp26dp =	=	real grp, paper and paper products, DPSA.
cdh =	-	cooling degree hours.
rprngdp26144=		price of nat gas deflated by pgpo26.
oiefpr =	=	price of electricity, other industrial, DPSA.
q1 =	=	quarterly binary variable.
q2 =		quarterly binary variable.

MFGSLS91:GWH28X Cochran-Orcutt QUARTERLY data for 63 periods from 1975Q2 to 1990Q4 Date: 28 FEB 1991 qwh28x 0.00005 * rgrp28dp - 0.00036 * hdh - 6.81374 * q2 + 64.1862 = (6.64905) (3.26995)(2.38279)(4.19481)LHS Mean 158.005 Std Err 9.8350 Sum Sq 5610.22 0.9096 R Bar Sq 0.9034 F 4, 58 145.955 R Sq D.W.(4)1.8895 D.W.(1)1.9075 AR 0 = + 0.82544 * AR 1(11.0522)gwh28x = sales, chemicals less man-made fibers, DPSA. rgrp28dp= real grp, chemicals, DPSA.

- hdh = heating degree hours.
- q2 = quarterly binary variable.

MFGSLS91:GWH32 Cochran-Orcutt QUARTERLY data for 61 periods from 1975Q4 to 1990Q4 Date: 28 FEB 1991 gwh32 0.00032 * rgrp32dp - 0.00034 * hdh + 4.14489 * rprnqdp3213 = (11.8787)(6.00950) (1.21770)- 11.2743 * oiefpr.2/(pgpo32.2/100) + 0.00039 * cdh + 85.7616 (2.37618)(3.40533) (4.36022)3315.88 Std Err 7.8361 LHS Mean 226.310 Sum Sq 0.9527 F 6, 54 202.595 0.9575 R Bar Sq R Sq · D.W.(1) 1.8243 D.W.(4) 2.0614 $AR 0 = + 0.60374 * AR_1$ (5.51164)

sales, gwh, stone, clay, and glass products, DPSA. qwh32 = = real grp, stone, clay, and glass products, DPSA. rgrp32dp = heating degree hours. hdh price of nat gas deflated by pgpo32. rprngdp3213= \equiv price of electricity, other industrial, DPSA. oiefpr = stone, clay, and glass products deflator. pqpo32 = cooling degree hours. cdh

MFGSLS91:GWH34 Cochran-Orcutt QUARTERLY data for 52 periods from 1978Q1 to 1990Q4 Date: 28 FEB 1991
gwh34
= 0.00010 * rgrp34dp + 0.00021 * cdh + 0.00003 * hdh (42.4683) (1.95199) (1.08729)
+ 4.30436 * rprngdp34 + 2.24656 * q3 - 17.2394 (6.59708) (1.32158) (4.98826)
Sum Sq485.374Std Err3.4407LHS Mean85.2075R Sq0.9737R Bar Sq0.9673F 10, 41151.798D.W.(1)1.3608D.W.(4)2.0550
AR_0 = + 0.32132 * AR_1 - 0.12589 * AR_2 - 0.15067 * AR_6 (2.67069) (1.12591) (1.76305) - 0.19849 * AR_8 - 0.25092 * AR12 (2.36146) (3.08504)
<pre>gwh34 = sales, gwh, fabricated metals products, DPSA. rgrp34dp = real grp, fabricated metals products, DPSA. cdh = cooling degree hours. hdh = heating degree hours. rprngdp34= price of nat gas deflated by pgpo34. q3 = quarterly binary variable.</pre>

•

der manufacture de la companya de la

Construction of the second

Construction of the second

Anna gannada

1000 march 1000

no standard and a standard a

And the second se

MFGSLS91:GWH36 Cochran-Orcutt QUARTERLY data for 71 periods from 1973Q2 to 1990Q4 Date: 4 MAR 1991 qwh36 .0.00008 * rgrp36dp + 0.00049 * cdh + 162.894 = (3.35242) (3.11453)(2.22957)LHS Mean 244.394 13697.7 Std Err 14.7453 Sum Sq R Bar Sq 0.9112 F 7, 63 103.619 0.9201 R Sq D.W.(4) 1.9619 1.9723 D.W.(1) $AR_0 = + 0.59797 * AR_1 + 0.17571 * AR_3 - 0.22742 * AR_6$ (5.76992) (1.51544) + 0.16144 * AR_7 + 0.21505 * AR_9 (1.73817)(1.22141)(1.87164)

gwh36 = sales, gwh, electrical machinery, DPSA. rgrp36dp= real grp, electrical machinery, DPSA. cdh = cooling degree hours. MFGSLS91:GWH38 Nonlinear Least Squares QUARTERLY data for 62 periods from 1975Q3 to 1990Q4 Date: 4 MAR 1991 gwh38 0.00003 * rgrp38dp - 19.4975 * d38a - 9.06782 * d38b = (10.2177)(7.07739)(2.13006)+ 0.00019 * cdh - 3.01520 * oiefpr/(pgpo38/100) + 29.6864 (3.68121) (10.1026)(9.14318) 2.0460 LHS Mean 21.2358 Res Mean Sum Sq 227.376 Std Err 0.1463 %RMSE 0.9549 0.9491 F 7, 54 163.363 R Bar Sq R Sq 21.2349 1.8739 D.W.(4) 2.0110 D.W.(1)AR 0 =+ 0.52371 * AR 2 (3.93152)MA 0 =+ 0.88624 * MA 1 (8.54921)gwh38 = sales, gwh, instruments, DPSA. rgrp38dp= real grp, instruments, DPSA. d38a = binary variable. d38b = binary variable. = price of electricity, other industrial, DPSA. oiefpr = deflator for instruments. pgpo38

MFGSLS91:GWH21 Cochran-Orcutt OUARTERLY data for 57 periods from 1976Q4 to 1990Q4 Date: 21 FEB 1991 qwh21 0.00030 * cdh - 17.2952 * d212 + 16.7256 * q3 + 9.8968 * q4= (5.86622) (5.59237) (1.88774)(5.44107) + 7.91431 * rprngdp2174 - 19.1249 * oiefpr.2/(pgpo21.2/100) (10.1445)(5.99463)-0.00012 * hdh + 150.414(25.2097)(2.33888)Sum Sq Std Err 5.5319 LHS Mean 120.037 1438.32 0.9371 F 9,47 93.6874 0.9472 R Bar Sq R Sa D.W.(4) 2.1182 D.W.(1) 2.0022 $AR_0 = + 0.44843 * AR_1 - 0.18223 * AR 5$ (3.35769) (1.31590) gwh21 sales, gwh, tobacco products, DPSA. = ÷ cooling degree hours. cdh d212 = binary variable. quarterly binary variable. **q**3 **=** .

q4	=	quarterly binary variable.
rprngdp217	4=	price of nat. gas deflated by pgpo21.
oiefpr	=	price of electricity, other industrial, DPSA.
pgpo21	=	deflator for tobacco products.
hdh	=	heating degree hours.

MFGSLS91:GWH23 Cochran-Orcutt QUARTERLY data for 62 periods from 1975Q3 to 1990Q4 Date: 21 FEB 1991 gwh23 0.00005 * rgrp23dp + 0.00029 * cdh - 0.00018 * hdh = (3.33712)(4.19119)(8.16536) - 5.87562 * q2 + 5.65579 (4.72153) (0.88281)LHS Mean 54.5529 Sum Sq 934.916 Std Err 4.0859 0.8202 R Bar Sq 0.8042 F 5, 56 51.0974 R Sq D.W.(1)1.8912 D.W.(4)1.7658 $AR 0 = + 0.21916 * AR_2$ (1.68278)gwh23= sales, gwh, apparel products, DPSA. cooling degree hours. cdh = hdh = heating degree hours.

quarterly binary variable.

Integrated Resource Planning

q2

=

MFGSLS91:GWH25 Nonlinear Least Squares QUARTERLY data for 54 periods from 1977Q3 to 1990Q4 Date: 27 FEB 1991 gwh25 0.00008 * rgrp25dp + 0.00025 * hdh - 8.01806 * q1 = (1.85314)(1.42417)(7.51518)+ 4.58032 * q2 + 9.11321 * q3 + 4.48584 * rprngdp25143 (1.97337) (1.43972) (2.01448) - 3.92870 * gp3pr/(pgpo25/100) + 63.1255 (10.2488)(1.01038)1042.92 Std Err 4.8672 LHS Mean 160.312 Sum Sq 0.9289 0.9144 F 9,44 63.8670 R Bar Sq R Sq D.W.(1)2.0059 D.W.(4) 1.7636 AR 0 = + 0.46061 * AR 2(2.34545)MA 0 =+ 0.65679 * MA_1 (4.04022)= sales, gwh, furniture and hh products, DPSA. gwh25 👘 rgrp25dp = real grp, furniture and hh products, DPSA. hdh ---heating degree hours.

q2 =	quarterly binary variable.
q3 =	quarterly binary variable.
rprngdp25143=	price of nat. gas deflated by pgpo25.
gp3pr =	price of electricity, group 3, DPSA.
pgpo25 =	deflator for furniture and hh products.

MFGSLS91:GWH27 Cochran-Orcutt QUARTERLY data for 39 periods from 1980Q2 to 1989Q4 Date: 28 FEB 1991 qwh27 0.00012 * rgrp27dp + 0.00014 * cdh + 0.00015 * hdh = (7.54441)(1.08402)(1.66115)- 7.70220 * g1 + 9.10060 * g3 + 7.24179 * rprngdp27184 - 34.7934 (4.48320) (10.2102)(2.85984) (4.05084) Std Err 2.3704 LHS Mean 63.9364 Sum Sq 151.712 0.9731 F 11, 27 126.115 R Bar Sq 0.9809 R Sq D.W.(1) 1.9031 D.W.(4) 1.7397 $AR_0 = + 0.52336 * AR_1 - 0.24623 * AR_2 + 0.27213 * AR_4$ (2.86582) (1.32292) (1.50687)- 0.32935 * AR_5 - 0.27143 * AR_8 (1.71281)(1.31129)= sales, gwh, printing and publishing, DPSA. awh27

rgrp27dp	=	real grp, printing and publishing, DPSA.
cdh	=	cooling degree hours.
hdh	=	heating degree hours.
g1	=	quarterly binary variable.
q 3	=	quarterly binary variable.
rprngdp271	84=	price of natural gas deflated by pgpo27.

•

MFGSLS91:GWH28M Cochran-Orcutt QUARTERLY data for 57 periods from 1976Q4 to 1990Q4 Date: 28 FEB 1991

gwh28m

= -16.8054 * q1 + 20.4547 * q2 + 52.8511 * q3(4.34728)(6.78034)(13.7736) - 9.49204 * mmfpr.1/(pgpo28.1/100) + 1.44568 * jip282m + 254.527 (5.38615)(5.84095)(1.62735)LHS Mean 406.041 Sum Sq 6844.31 Std Err 11.9411 R Sq 0.9261 R Bar Sq 0.9137 F 8, 48 75.1399 2.0780 1.8849 D.W.(4)D.W.(1) $AR_0 = + 0.47297 * AR_1 + 0.29339 * AR_2 + 0.15376 * AR_6$ (3.44027)(2.21002) (1.72260)

gwh28m = sales, gwh, man-made fibers, DPSA. **q**1 = quarterly binary variable. quarterly binary variable. q2 = quarterly binary variable. = q3 price of electricity, man-made fibers, DPSA. mmfpr pgpo28 = deflator for chemicals and allied products. jip282m= industrial production index, man-made fibers.

MFGSLS91:GWH30 Cochran-Orcutt QUARTERLY data for 42 periods from 1980Q3 to 1990Q4 Date: 28 FEB 1991 awh30 0.00029 * rgrp30dp - 23.8724 * q1 + 23.0803 * q3 2.22 (8.50748) (8.48378)(33.3877)+ 9.35330 * rprngdp30.7 (3.93873)- 11.3304 * gp4pr.2/(pgpo30.2/100) + 46.5023 (7.24802)(2.17098)LHS Mean 351.814 8.6634 2476.81 Std Err Sum Sq F 8, 33 303.205 0.9866 R Bar Sq 0.9833 R Sq D.W.(4) 1.7897 1.9900 D.W.(1) $AR_0 = -0.25617 * AR_2 - 0.27042 * AR_6 - 0.37312 * AR_12$ (1.75320) (3.19656) (1.64344)= sales, gwh, rubber and plastic products, DPSA. gwh30 rgrp30dp= real grp, rubber and plastic products, DPSA. = quarterly binary variable. **q1** = quarterly binary variable. **q**3 rprngdp = price of nat gas deflated by pgpo30. = price of electricity, group 4, DPSA. qp4pr pgpo30 = rubber and plastic products deflator.

MFGSLS91:GWH33 Cochran-Orcutt QUARTERLY data for 59 periods from 1976Q2 to 1990Q4 Date: 28 FEB 1991

gwh33

= 0.00016 * rgrp33dp + 8.03231 * rprngdp3344 (3.55177) (1.91959)

- 4.61514 * oiefpr/(pgpo33/100) + 104.222 (1.31298) (1.97473)

123.772 1655.06 Std Err 5.6416 LHS Mean Sum Sq F 6, 52 559.332 0.9830 0.9847 R Bar Sq RSq D.W.(1)2.0137 D.W.(4)2.0170

 $AR_0 = + 0.73768 * AR_1 + 0.50485 * AR_4 - 0.28601 * AR_5$ (7.10679) (3.85388) (2.14770)

gwh33 = sales, gwh, primary metals products, DPSA. rgrp33dp = real grp, primary metals products, DPSA. rprngdp3344= price of nat gas deflated by pgpo33. oiefpr = price of electricity, other industrial, DPSA. pgpo33 = primary metals products deflator.

MFGSLS91:GWH35 Cochran-Orcutt QUARTERLY data for 40 periods from 1981Q1 to 1990Q4 Date: 4 MAR 1991 qwh35 0.00001 * rgrp35dp + 0.00172 * cdh - 11.6174 * q1 (10.2932) (3.30118)(6.45708)- 9.02320 * q2 - 8.05465 * q3 + 11.7729 * rprngdp35114 (11.4887) (1.12870)(1.94848)- 4.14616 * oiefpr.1/(pqpo35.1/100) + 183.096 (67.5938)(11.4330)332.678 Std Err 3.3870 LHS Mean 278.385 Sum Sq 0.9922 F 10, 29 498.289 0.9942 R Bar Sq R Sq D.W.(1)1.7347 D.W.(4) 2.2965 $AR 0 = -0.43541 * AR_2 - 0.15629 * AR_4 - 0.36200 * AR_6$ (1.57081) (3.92489)(3.54745) sales, gwh, non-electrical machinery, DPSA. qwh35 = = real grp, non-electrical machinery, DPSA. rgrp35dp cdh ----cooling degree hours. = quarterly binary variable. **q1** quarterly binary variable. = **q2** quarterly binary variable. = α3 rprngdp35114= price of nat gas deflated by pgpo35. price of electricity, other industrial. oiefpr = pgpo35 = non-electrical machinery deflator.

Page 176

MFGSLS91:GWH37 Cochran-Orcutt QUARTERLY data for 46 periods from 1979Q3 to 1990Q4 4 MAR 1991 Date: gwh37 0.00019 * rgrp37dp + 0.00043 * cdh - 4.02341 * q1 -(6.98667)(2.78819)(18.6283)- 8.55167 * oiefpr.2/(pgpo37.2/100) + 2.11557 * rprngdp37184 (4.70165)(1.56430)+ 17.7153 (2.81406)62.9888 Sum Sa 494.158 Std Err 3.6061 LHS Mean 0.9831 R Bar Sq 0.9799 F 7, 38 315.185 R Sq D.W.(1) 1.9965 1.9532 D.W.(4) $AR_0 = + 0.37744 * AR_1 - 0.41717 * AR 5$ (2.57035)(2.70282)

sales, gwh, transportation equipment, DPSA. gwh37 = rgrp37dp = real grp, transportation equipment, DPSA. = cooling degree hours. cdh price of electricity, other industrial, DPSA. = oiefpr pgpo37 = deflator for transportation equipment. rprngdp37184= price of nat gas deflated by pgpo37.

MFGSLS91:GWH39 Cochran-Orcutt QUARTERLY data for 44 periods from 1980Q1 to 1990Q4 Date: 4 MAR 1991 gwh39 0.00056 * rgrp39dp + 0.00022 * cdh - 39.7676 = (5.13297)(3.22474)(9.43194)LHS Mean 34.8293 1069.47 Std Err 5.2366 Sum Sq 0.9077 F 4, 39 106.684 0.9163 R Bar Sq R Sq D.W.(1)1.7633 D.W.(4) 1.4316 $AR_0 = + 0.74700 * AR_1 - 0.30361 * AR_5$ (2.37590) (7.24678)

gwh39 = sales, gwh, misc. mfg. products, DPSA. rgrp39dp= real grp, misc. mfg. products, DPSA. cdh = cooling degree hours.

RESIDENTIAL

The residential sales forecast is done by combining a short term "trend-following" forecast (that is, no economic variables in the method) with a long term forecast that uses four econometric models to forecast sales based on such variables as income, interest rates, and population.

The short term forecast (1991-1992) was prepared by using Box-Jenkins analysis on a history of customer counts and weather-corrected KWH sales per customer for the eight major groups in the residential class. The customer forecasts were then multiplied times the KWH sales per customer forecasts to obtain the short term sales forecast.

The long term forecast (1993-2005) was made by using four econometric models to forecast the following: number of DPC's total residential customers, number of DPC's electric heating customers, KWH per customer of DPC's electric heating customers, and KWH per customer of DPC's non-electric heating customers. These forecasts were then combined to obtain the long term sales forecast.

The actual variables and equations used to make the long term forecast are given below:

NUMBER OF DPC'S TOTAL RESIDENTIAL CUSTOMERS: Ordinary Least Squares QUARTERLY data for 67 periods from 1974Q2 to 1990Q4 Date: 11 MAR 1991

diff(rescus91)

(5.74267) (5.29757)

Sum Sq2E+08Std Err1802.17LHS Mean6638.88R Sq0.7450R Bar Sq0.7195F6, 6029.2186D.W.(1)1.8286D.W.(4)1.3019

rescus91 = Total residential customers
sapop91 = Service area population
intmort.1= Real interest rates (lagged one period)
rdpsay.1 = Real disposable service area income (lagged one period)
q1 = Dummy variable for 1st quarter
q3 = Dummy variable for 3rd quarter
q4 = Dummy variable for 4th quarter

NUMBER OF DPC'S ELECTRIC HEATING CUSTOMERS: Cochran-Orcutt QUARTERLY data for 53 periods from 1977Q3 to 1990Q3 Date: 11 MAR 1991 diff(ehcu91) 0.44190 * diff(rescus91) + 940.040 * q1 - 1572.52 * q1989q4 (3.84289)(1.86580) (10.6833)+ 4274.64 * relresgas91[-5] + 1044.20 (0.75197)(1.97858)6708.34 Std Err 910.003 LHS Mean 4E+07 Sum Sq F 5, 47 35.5989 0.7911 0.7689 R Bar Sq R Sq D.W.(1)2.1856 D.W.(4) 1.6873 AR 0 = + 0.59982 * AR 1(5.05764)ehcu91 = Electric heating customers = Total residential customers. rescus91 Dummy variable for 1st quarter == **q**1

q1989q4 = Dummy variable for 4th quarter of 1989
relresgas91.5 = real price of natural gas in 1982 \$'s (lagged 5
periods)

KWH PER CUSTOMER OF DPC'S ELECTRIC HEATING CUSTOMERS:
Cochran-Orcutt QUARTERLY data for 56 periods from 1977Q1 to 1990Q4 Date: 19 MAR 1991
ehkpc91
= $4.95737 * hdh91 + 2.70842 * cdh91*ehac91$ (12.6653) (7.38960)
-220.657*rehp8291[-2] - 1.09083 * ltrend*hdh91 + 3243.10 (2.22548) (5.89059) (6.05613)
Sum Sq 3047175 Std Err 246.867 LHS Mean 4312.57 R Sq 0.9732 R Bar Sq 0.9705 F 5, 50 362.964 D.W.(1) 2.0310 D.W.(4) 1.8765
$AR_0 = + 0.42775 * AR_4$ (3.08522)
ehkpc91 = Electric heating kilowatt hours per customer hdh91 = Heating degree hours
<pre>cany1 = Cooling degree nours ehac91 = Air conditioning saturation of electric heating</pre>

		Cualc	Juers				•			
rehp8291(-2)	=	Real	price	in	cents	per	kwh	for	electric	heating
		custo	omers ()	lagg	ed 2 pe	eriod	s)			

ltrend = Trend variable starting in 1975; with annual change in ltrend decreasing over the years

KWH'S PER CUSTOMER OF DPC'S NON-ELECTRIC HEATING CUSTOMERS: Cochran-Orcutt QUARTERLY data for 60 periods from 1976Q1 to 1990Q4 Date: 19 MAR 1991 nehkpc91 0.00347 * water*hdh91 + 2.87192 * nehac91*cdh91 = (6.87516)(14.7839) - 40.6667 * rnehp8291 + 2187.12 (2.50766)(18.9178)Std Err 57.4852 LHS Mean Sum Sq 178446 2428.41 0.9720 R Bar Sq 0.9694 F 5, 54 374.370 R Sq D.W.(1) D.W.(4) 1.9894 2.4211 $AR_0 = -0.18837 * AR_3 + 0.72040 * AR_4$ (2.07391) (7.94434)nehkpc91 Non-electric heating kilowatt hours per customer = water = Electric water heating saturation of non-electric customers hdh91 = Heating degree hours ehac91 Air conditioning saturation of non-electric customers Ξ cdh91 = Cooling degree hours rnehp8291 =Real price in cents per kwh for non-electric customers

Non-participating Municipals Same model as last year

.

ļ

6

dismost v v sou

and the second

S. www.ra

Model: NPR Dependent Varia	ble: NPR		·		
-		Analys	is of Variance	•	
Source	DF	Sum of Squares	Mean Square	F Value	Prob>f
Model Error C'Total	5 414 37 5938 42 420	25085957 02019.84 18887977	8285017191.4 16048703.239	516.242	0.0001
Root MSE Dep Mean C.V.	4006.08 216305.30 1.85	328 233 205	R-square Adj R-sq	0.9859 0.9840	
		Param	eter Estimate:	5	
Variable DF	Param Esti	eter mate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP 1 HEATING 1 COOLING 1 INCU6P 1 NPRPR_5 1 TOTPR1 1	3.40 6.66 0.00 -8956.67	6674 10 8948 1770 3509 8472 46 0098 14)534.687180 0.15111208 0.19308524 0.00038027 594.0869848 4705.308691	3.481 22.559 34.502 9.227 -1.908 2.727	0.0013 0.0001 0.0001 0.0001 0.0642 0.0097
DF: 2	Test of F: 0 Chisq	irst and Value:	Second Moment 12.693333989	Specification Prob>Chisq:	0.8902
Durbin-Watson I (For Number of 1st Order Autor) Obs.) correlatio:	1.71 4 n 0.12	9 3 2		

•

Electric companies

			-					
Dependent Vari	able	= EC	MWH					
- · •		Or	dinary	Least	Squares	Estima	ates	
	SSE MSE SBC Reg T Durbi	Rsq Ln-Wa	2. 50 10	1837E9 782908 01.961 0.7812 1.0882	DFE Root AIC Tota	MSE 1 Rsq	43 7126.213 992.6054 0.7812	· ·
Variable	C)F	F	3 Value	Std E	rror	t Ratio Ap	prox Prob
Intercept HEATING COOLING RDDPSAY RMORT 2	<u>.</u>	1 1 1 1	414 0.5898 2.2529 0.0008 -2429	450.017 3029624 3616088 3424151 509.352	0.25	7234 2267 1425 0186 9257	5.730 2.338 6.798 4.533 -6.180	0.0001 0.0241 0.0001 0.0001 0.0001
	Fe	Fimat	tes of	the Au	toregres	sive P	arameters	
	Lag 1 2 3 4 5 6 7	C c - ((((((Deffic D.7275 D.2970 D.0681 D.3366 D.3182 D.2164 D.2897	ient 9856 3249 4177 2226 4351 6366 2463	Std E 0.1595 0.1971 0.1965 0.1885 0.1965 0.197 0.1595	Error 51834 10423 18247 33147 18247 18247 18247 18247 51224	t Ra: -4.5612 1.5069 0.347 -1.787 1.622 1.098 -1.816	Lio 222 982 339 388 181 219 246
			Y	ule-Wa	lker Est	imates		
	SSE MSE SBC Reg	Rsq	8	.5002E 361159 86.314 0.871	8 DFE 9 Roo 5 AIC 4 Tot	t MSE al Rsq	36 4859.177 963.8601 0.9148	
Variable	-	DF		B Valu	e Std	Error	t Ratio A	Abbrox brop
Intercep HEATING COOLING RDDPSAY RMORT_2	ot	1 1 1 1	40 0.57 2.15 0.00 -24	0811.88 5552665 7899359 0879679 6966.49	12 58 0.2 92 0.1 97 0.0	8630 218533 175704 00207 45422	4.729 2.638 12.281 4.242 -5.437	0.0001 0.0122 0.0001 0.0001 0.0001

1

· · · · · · · · · · · ·

.

Dependent Vari	able = MP	MPA Total B	Requirements		÷
	Cr	dinary Least	Squares Estima	tes	
	SSE MSE SBC Reg Rsq Durbin-Wa	7.4759E9 1.3593E8 1284.532 0.9912 1.3238	DFE Root MSE AIC Total Rsq	55 11658.71 1276.222 0.9912	
Variable	DF	B Value	Std Error	t Ratio App	prox Prob
VAFIADIE Intercept MPAHEAT MPACOOL RDDPSAY	, 1 1 1 1	186703.858 0.0001045914 0.0001977314 0.0096616802	9223.2 4.222E-6 5.801E-6 0.000295	20.243 24.772 34.088 32.738	0.0001 0.0001 0.0001 0.0001
	Setimat	es of the Aut	oregressive Pa	arameters	
	Lag Co 1 -0 2 -0 3 0 4 -0 10 -0 12	Defficient 0.30247676 0.27285521 0.24437309 0.26210116 0.30641631 0.28046352	Std Error 0.12658310 0.13510529 0.12996319 0.127534 - 1 0.122343 - 1 0.126399 - 1	t Rat -2.3895 -2.0195 1.8803 -2.0551 -2.5045 2.2188	i0 51 75 25 44 62 60
•		Yule-Wal)	ker Estimatés		
	SSE MSE SBC Reg Rsq	4.0326E9 82297083 1275.186 0.9853	DFE Root MSE AIC Total Rsq	49 9071.774 1254.41 0.9952	
Variable	DF	B Value	Std Error	t Ratio A	bbrox brop
Intercep MPAHEAT MPACOOL RDDPSAY	it 1 1 1	188443.001 0.0001092891 0.000204481 0.0094809587	16514 3.856E-5 5.552E-5 0.000443	11.411 28.343 36.829 21.409	0.0001 0.0001 0.0001 0.0001

Integrated Resource Planning

.

And the second second

And the second s

 $\left(\right)$

-

F

and the second se

1.

Page 186

PMPA Total Requirements Same model as last year

Model: PMPA Dependent Variable: PMP

Analysis of Variance

Source	DF	Sum Squar	of es	Mean Square	F Value	Prob>F
Model Error C Total	5 41 46	1025268943 12969591 1038238534	19 .05 3 24	20505378864 1633148.901	648.224	0.0001
Root MSE Dep Mean C.V.	562 3021	24.33542 40.78723 1.86149	R- Ad	square j R-sq	0.9875 0.9860	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP PMPHEAT PMPCOOL INCU6P PMPPR_1 TOTPR_3	1 1 1 1 1	110865 0.000100 0.000187 0.004013 -14396 12681	15381.384781 0.00000417 0.00000555 0.00043377 6971.4284177 17610.772468	7.208 24.038 33.696 9.252 -2.065 0.720	0.0001 0.0001 0.0001 0.0001 0.0453 0.4756

Test of First and Second Moment Specification DF: 20 Chisq Value: 21.054117849 Prob>Chisq: 0.3940

Durbin-Watson D2.053(For Number of Obs.)471st Order Autocorrelation-0.084

Dependent Vari	able	= EMC	EMC	Total	Requirements		
•		Ord	linary	Least	Squares Estin	nates	
	SSE MSE SBC Reg I Durb:	Rsq in-Wat	2. 4. 14	358E10 0657E8 43.159 0.9833 1.3774	DFE Root MSE AIC Total Rsq	58 20163.7 1432.443 0.9833	
Variable	I	DF	В	Value	Std Error	t Ratio A	pprox Prob
Intercept EMCHEAT EMCCOOL RDDPSAY EMCPR_1		1 1 1 1 1	1818 0.0001 0.0001 0.010 -222	41.481 096099 078453 326681 79.048	35064 4.323E-6 5.791E-6 0.001087 11798	5.186 25.353 18.621 9.499 -1.888	0.0001 0.0001 0.0001 0.0001 0.0640
	Es	timat	es of	the Au	toregressive	Parameters	•
、 ·	Lag 1 4 5	Co -0 -0 0	effici .41961 .62605 .34730	ent 1386 5434 1582	Std Error 0.12267584 0.10547267 0.12644644	t Ra -3.420 -5.93 2.74	atio 1509 5702 6663
			Yı	ile-Wal	ker Estima-÷	3	
	SSE MSE SBC Reg	Rsq	1	.098E10 .9963E8 409.734 0.9563) DFE Root MSE AIC Total Rs	55 14129.03 1392.589 q 0.9922	
Variable		DF		B Valu	e Std Error	t Ratio	Approx Prob
Intercep EMCHEAT EMCCOOL RDDPSAY EMCPR_1	t	1 1 1 1	142 0.000 0.000 0.010 -14	912.24 106168 100025 515168 880.53	8 45544 8 4.671E-6 7 5.535E-6 9 0.001217 0 12538	3.138 22.730 18.071 8.637 -1.187	0.0027 0.0001 0.0002 0.0002 0.240

Integrated Resource Planning

.....

Service of the service of

Contraction of the second

Services and a state

And the second s

- ---- Ing

Page 188

•

Ordinary Least Squares Estimates SSE 3.9279E9 DFE 58 MSE 67723149 ROOT MSE 8229.408 1330.241 SBC AIC 1319.526 0.9889 Total Rsq 0.9889 Reg Rsq 1.7030 Durbin-Watson Variable DF B Value Std Error t Ratio Approx Prob 48363.2589 3.596 0.0007 Intercept 1 13451 28.770 0.0001 0.0001083357 SALHEAT 1 3.766E-6 0.0001331113 26.346 0.0001 SALCOOL 1 5.052E-6 INCU3P 13.833 0.0001 1 0.0053118437 0.000384 -13155.3991 SALPR 1 1 3970 -3.3140.0016 Estimates of the Autoregressive Parameters Coefficient t Ratio Lag Std Error 1 -0.269065230.13158458 -2.0448082 0.12729529 0.11476245 1.109207 3 0.11450529 0.13902915 1.214172 4 -0.540400090.114762+5 -4.7088585 0.28693452 2.180609 0.13158453 Yule-Walker Estimates SSE 2.1474E9 53 DFE MSE 40517039 Root MSE 6365.3 SBC 1314.622 AIC 1293.19 Reg Rsg 0.9886 Total Rsg 0.9939 Variable DF **B** Value Std Error t Ratio Approx Prob Intercept 34623.0435 1 13511 2.563 0.0133 SALHEAT 1 0.0001000217 0.0001 4.589E-6 21.796 SALCOOL 1 5.544E-6 0.0001223573 22.072 0.0001 INCU3P 1 0.005538052 0.00038 14.587 0.0001 SALPR 1 1 -10828.3381 3889 -2.784 0.0074

Saluda River Total Requirements

Integrated Resource Planning

Dependent Variable = SAL

Page 189

DEFINITIONS

NON-PARTICIPATING MUNICIPALS MODEL

-7, [].

in the second se

Chiu

Allowers Collins

and the second

Mayorreinmanager

Mark Market

-

			·
	Heating		hdh * ehsat
	hdh	-	Net P&T heating degree hours, base = 65
r	eheat	-	Duke Power residential electric heating saturation
And Areas	Cooling	-	cdh * acgat
L	coorring adh ·		not BSE cooling degree hours base = 65
	cun	_	Duko Devon regidential ain conditioning caturation
	acsat		Duke Power residential air conditioning saturation
	INCU6P	-	6 period moving average of RDDPSAY
££	rddpsay		real disposable DP service area income
	NPRPR_5	-	RNPRPRCE lagged 5 quarters
	rnprprce	-	real cents/kwh, non-participating municipals
	TOTPR1	-	real price of natural gas, 1st quarter
87 m			
	ELECTRIC COMPA	NIES	MODEL
A			
	HEATTNG	-	same as for non-participating municipals
	COOLING	_	same as for non-participating municipals
	BDDBCAV	_	same as for non-participating municipals
\$,.đ	RDDF5A1	-	same as for non-participating municipats
. · ·	RMORT_2	-	real mortgage interest rate, lagged 2 quarters
			,
	MPA MODEL		·
Γ.			
	MPAHEAT		mparescu * mhdh * ehsat
k	mparescu	-	MPA residential customers
	mhdh		net calendar heating degree hours, base = 65
	ehsat	-	same as for non-participating municipals
	MPACOOL	-	mparescu * mcdh * acsat
a	mcdh		net calendar cooling degree hours, base = 65
	acsat	-	same as for non-narticinating municipals
	RDDPSAV		same as for non-participating municipals
V			same as for non pareterpating manietpais
-)	DMDA MODET		
	FMFA MODEL		
	DWDUGDØ		
	PMPHEAT		pmprescu * pnan * ensat
ſ	pmprescu	-	PMPA residential customers
	phdh		same as for MPA
	ehsat		same as for non-participating municipals
~}	PMPCOOL	-	pmprescu * pcdh * acsat
	pcdh		same as for MPA
	acsat	-	same as for non-participating municipals
	INCU6P	-	same as for non-participating municipals
1	PMPPR 1	_	romporce lagged 1 quarter
	rnmnrce	_	real conts/kub DMDA
	THUTTE 3		real price of natural dad ladood 2 quarters
	-0		rear price of natural yas, lagged 3 quarters

EMC MODEL

HEAT	-	emcrescu * chdh * ehsat
emcrescu	-	EMC residential customers
chdh	-	same as for MPA
ehsat	-	same as for non-participating municipals
EMCCOOL	-	emcrescu * ccdh * acsat
ccdh	-	same as for MPA
acsat	-	same as for non-participating municipals
RDDPSAY	-	same as for non-participating municipals
EMCPR_1	-	real cents/kwh, EMC

SALUDA MODEL

Salheat –	salrescu * chdh * ehsat
salrescu -	Saluda residential customers
chdh -	same as for MPA
ehsat -	same as for non-participating municipals
SALCOOL -	salrescu * ccdh * acsat
ccdh -	same as for MPA
acsat -	same as for non-participating municipals
INCU3P -	3 period moving average of RDDPSAY
SALPR_1 -	real cent/kwh. Saluda River

Integrated Resource Planning

And the second se

11

F. PEAK DEMAND EQUATIONS

Summer Peak Winter Peak

- Manual -

AMT and a second

and the state of the second

Startwood and starting

Non-American Street

یں بینیں میں میں م

SUMMER PEAKS

1991 Forecast: Summer Peaks- Residential Class

Dependent Variable = RESKWCU

Preliminary MSE = 0.012188

Estimates of the Autoregressive Parameters

Lag	Coefficient	Std Error	t Ratio
ī	-0.52150727	0.09918793	-5.257769

Autoreg Procedure

Yule-Walker Estimates

SSE MSE SBC Reg	Rsq	1.001108 0.013528 -87.1251 0.7946	DFE Root MSE AIC Total Rsq	74 0.116312 -113.994 0.8289	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMPMIN D1982 DUMA6 RESRP ACSATT HOUR3 HOUR4 HOUR6	111111111111111111111111111111111111111	$\begin{array}{c} 1.33986925\\ 0.01978070\\ -0.16708394\\ 0.12873608\\ -0.23111414\\ 0.02217841\\ -0.30256515\\ -0.20270452\\ 0.10336065\\ \end{array}$	0.75866 0.01028 0.07574 0.05136 0.08244 0.00541 0.03798 0.03198 0.04151	1.766 1.925 -2.206 2.507 -2.803 4.101 -7.965 -6.339 2.490 (.610)	0.0815 0.0581 0.0305 0.0144 0.0065 0.0001 0.0001 0.0001 0.0150

total resid Mw/ total resid customers RESKWCU= TEMPMIN= minimum morning temperature D1982 = dummy variable =1 for 1982, =0 otherwise DUMA6 = dummy variable =1 for 6 PM 1981-87 resid price of electricity deflated by DPSA deflator RESRP = ACSATT =resid saturation of window and central units times TEMP TEMP = temperature at a given hour dummy variable =1 for hour 3 PM, =0 otherwise HOUR3 = dummy variable =1 for hour 4 PM, =0 otherwise HOUR4 = dummy variable =1 for hour 6 PM, =0 otherwise HOUR6 = HOUR7 = dummy variable =1 for hour 7 PM, =0 otherwise

1991 Forecast: Summer Peak- Commercial Class

Dependent Variable = GSKWCU

Preliminary MSE = 0.073059

Estimates of the Autoregressive Parameters

Lag	Coefficient	Std Error	t Ratio
ī	-0.59265231	0.09559033	-6.199919

Autoreg Procedure

Yule-Walker Estimates

SSE	5.581131	DFE	71
MSE	0.078607	Root MSE	0.28037
SBC	57.56554	AIC	33.62105
Reg Rsg	0.9360	Total Rsq	0.9474

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	1.47977783	2.0554	0.720	0.4739
TEMP	1	0.04686680	0.0103	4.533	0.0001
TEMPMIN	1	0.07316200	0.0285	2.571	0.0122
GRPNM6P	1	9.1703724E-8	1.257E-8	7.294	0.0001
DGA2	1	0.82091421	0.2467	3.327	0.0014
DGRPNM	1	7.2859151E-7	1.841E-7	3.958	0.0002
GS4P	1	-0.38293335	0.1896	-2.020	0.0471
HOUR6	1	-1.75158089	0.0828	-21.159	0.0001
HOUR5	1	-0.50300706	0.0711	-7.074	0.0001

GSKWCU =	total commercial Mw/ G+GA customers
TEMP =	temperature at a given hour
TEMPMIN=	minimum morning temperature
GRPNM6P=	non-manufacturing GRP in 6 period moving average
GRP =	DPSA Gross Regional Product by SIC deflated by DPSA deflator
DGA2 =	dummy variable =1 for 2 PM on July 17, 1980, =0 otherwise
DGRPNM =	change from prior quarter of non-mfg GRP
GS4P =	commercial price of electricity in 4 period moving average
	deflated by DPSA deflator

HOUR5= dummy variable =1 for hour 5 PM, =0 otherwise HOUR6= dummy variable =1 for hour 6 PM, =0 otherwise
1991 Forecast: Summer Peaks- Industrial Class Textiles Schedule Dependent Variable = TEXMW

Autoreg Procedure

Preliminary MSE = 620.2022

Estimates of the Autoregressive Parameters

Lag	Coefficient	Std Error	t Ratio
ī	-0.54103531	0.11444559	-4.727446

Autoreg Procedure

Yule-Walker Estimates

SSE	36456.99	DFE	54
MSE	675.1295	Root MSE	25.98325
SBC	617.4692	AIC	598.181
Reg Rsq	0.7217	Total Rsq	0.8283

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	514.993965	160.15	3.216	0.0022
COIN	1	-52.850705	8.76	-6.036	0.0001
GRP224P	1	0.0001299459	0.000026	5.045	0.0001
DGRP22	1	0.000252	0.000131	1.925	0.0595
TEMP	1	1.593726	0.93	1.715	0.0920
TEMPMIN	1	6.232762	1.92	3.253	0.0020
HOUR6	1	-39.490146	12.79	-3.087	0.0032
HOUR5	1	-22.262943	7.46	-2.983	0.0043

TEXMW =	total Mw in Textiles schedule
COIN =	dummy variable =1 for day of system monthly peak, =0 otherwise
GRP224P =	SIC 22 GRP in 4 period moving average
GRP =	DPSA Gross Regional Product by SIC deflated by DPSA deflator
TEMP =	temperature at a given hour
TEMPMIN =	minimum morning temperature
HOUR5 =	dummy variable =1 for hour 5 PM, =0 otherwise
HOUR6 =	dummy variable =1 for hour 6 PM, =0 otherwise

1991 Forecast: Summer Peaks- Indusrial Class Other Industrial Schedule Dependent Variable = OIMW

Ordinary Least Squares Estimates

	SS	E	80440.71	DFE	48	
	MS	E	1675.848	Root MSE	40.93712	
•	SE	C	678.153	AIC	648.3731	
	Re	a Rsa	0.9710	Total Rsg	0.9710	
	Du	rbin-W	atson 2.0600			
· .						
Varia	able	DF	B Value	Std Error	t Ratio A <u>r</u>	prox Prob
Inte	rcept	1	864.617560	139.62	6.193	0.0001
TEMP	-	1	2.275072	1.43	1.590	0.1184
GRPO	16P	1	0.0000488391	2.547E-6	19.179	0.0001
DGRP	DI	1	0.0000978775	0.000049	2.016	0.0494
D198	5	1	-106.420875	19.80	-5.374	0.0001
D198'	7	ī	95.124170	23.30	4.083	0.0002
JUL9	0	ī	-99.451375	27.46	-3.622	0.0007
DNG4	•	1	512,501553	240.64	2.130	0.0383
HOUR	11	· 1	322.067345	24.56	13,111	0.0001
HOUR	12	1	292.665664	27.55	10.624	0.0001
HOUR	2	1	285.475131	16.42	17.385	0.0001
HOUR	3	1	232.854492	16.19	14.386	0.0001
HOURA	4.	1	122.556144	17.16	7.143	0.0001
HOUR	ŝ	1	-113.677297	22.41	-5.072	0.0001
	-				••••	
			,			
OIMW =	total	Mw in (Other Industria	al schedule		
GRPOI6P=	total	MFG GR	P less SIC 22 G	GRP in 6 peri	od moving a	verage
GRP =	DPSA G	ross Re	egional Product	by SIC defl	ated by DPS	SA deflator
D1985 =	dummy	variab.	le =1 for 1985,	, =0 otherwis	e	
D1987 =	dummy	variab	le =1 for 1987,	, =0 otherwis	e	
Jul90 =	dummy	variabl	le =1 for July	1990, =0 oth	erwise	
DNG4 =	change	from r	prior guarter is	n price of na	tural gas d	eflated using
	DPSAd	eflato	r ¹	···· • • ··· ···	· · · ·	-
HOUR11 =	dummy	variab.	le =1 for hour	11 AM, =0 ot	herwise	
HOUR12 =	dummv	variab	le =1 for hour	12 PM. =0 ot	herwise	
HOUR2 =	dummy	variab	le =1 for hour	2 PM, =0 oth	erwise	
HOUR3 =	dummv	variab	le =1 for hour	3 PM, =0 oth	erwise	
HOUR4 =	dummv	variab	le =1 for hour	4 PM, =0 oth	erwise	
HOUR6 =	dummy	variab	le =1 for hour	6 PM, =0 oth	erwise	

4

1991 Forecast: Summer Peaks- Resale Class (combined model for summer and winter)

Dependent Variable = RESALE

Ordinary Least Squares Estimates

SSE	1060.069	DFE	22
MSE	48.18495	Root MSE	6.941538
SBC	228.3752	AIC	215.4694
Reg Rsq	0.9711	Total Rsq	0.9711
Durbin-Watso	n 1.9652	_	

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	-154.646276	71.242	-2.171	0.0410
TEMPMIN	1	2.935996	0.964	3.044	0.0059
PD4	1	-1.597144	0.208	-7.686	0.0001
GRPM6S	1	8.25034E-6	4.775E-7	17.279	0.0001
GRPM6W	1	6.9264202E-6	4.58E-7	15.122	0.0001
DY	1	0.000012439	3.134E-6	3.969	0.0007
WIN	1	243.142244	71.815	3.386	0.0027
D1983	1	12.455644	5.337	2.334	0.0291
D1987	1	-16.196601	5.602	-2.891	0.0085

total Mw in Resale schedule RESALE =TEMPMIN= minimum morning temperature for summer season prior day 4 PM temperature for winter season PD4 = GRPM6S =total manufacturing GRP in 6 period moving average times SUM SUM = dummy variable =1 for summer season, =0 otherwise total manufacturing GRP in 6 period moving average times WIN GRPM6w = WIN dummy variable =1 for winter season, =0 otherwise = DY = change from prior quarter in DPSA total real disposable income D1983 dummy variable =1 for 1983, =0 otherwise = dummy variable =1 for 1987, =0 otherwise D1987 =

1991 Forecast: Summer Peaks- Catawba Participants

Dependent Variable = MPA

Ordinary Least Squares Estimates

	SSE MSE SBC Reg Rsq Durbin-Wa	9250.761 330.3843 308.2534 0.9552 atson 2.2797	DFE Root MSE AIC Total Rsq	28 18.17648 299.0952 0.9552	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMP TEMPMIN AUG AUG86 Y6P	1 1 1 1 1 1	-558.244336 3.453198 5.492948 26.089254 -129.156485 9.6030948E-6	100.70 0.76 1.47 7.51 19.30 4.191E-7	-5.544 4.565 3.725 3.475 -6.693 22.911	0.0001 0.0001 0.0009 0.0017 0.0001 0.0001

total requirements for NC MPA#1 Catawba participant MPA = temperature at a given hour TEMP ----minimum morning temperature TEMPMIN= dummy variable =1 for August, =0 otherwise AUG = dummy variable =1 for August 1986, =0 otherwise AUG86 = = DPSA real disposable income in 6 period moving average Y6P

Dependent Variable = PMP

	SSE MSE SBC Reg Rsq Durbin-W	1419.529 54.59728 232.9615 0.9652 Vatson 1.9302	DFE Root MSE AIC Total Rsq	20 7.38899 224.167 0.9652	5 7 1 2
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMP TEMPMIN AUG AUG86 Y6P	1 1 1 1 1	-288.704247 1.651720 2.362302 9.211353 -43.873688 4.4247028E-6	41.250 0.340 0.616 3.074 7.845 1.713E-7	-6.999 4.863 3.832 2.997 -5.592 25.826	0.0001 0.0001 0.0007 0.0059 0.0001 0.0001

PMP	-	total requirements for SC PMPA Catawba participant
TEMP	=	temperature at a given hour
TEMPMI	N=	minimum morning temperature
AUG	=	dummy variable =1 for August, =0 otherwise
AUG86	=	dummy variable =1 for August 1986, =0 otherwise
Y6P	=	DPSA real disposable income in 6 period moving average

Integrated Resource Planning

1991 Forecast: Summer Peaks- Catawba Participants

1

1

1

Dependent Variable = EMC

SEP

Y6P

AUG86

Ordinary Least Squares Estimates

	SSE MSE SBC Reg Rsq Durbin-Wa	27072.04 966.8584 344.7624 0.9199 atson 2.2007	DFE Root MSE AIC Total Rsq	28 31.09435 335.6043 0.9199	3 5 3
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	: 1	-536.426461	118.80	-4.515	0.0001
TEMP	1	4.910076	1.22	4.037	0.0004
JUN	1	-43.263227	13.85	-3.123	0.0041

16.25

31.91

7.44E-7

-2.997

-4.367

17.253

EMC =	total requirements for NC EMC Catawba participant
TEMP =	temperature at a given hour
JUN =	dummy variable =1 for June, =0 otherwise
SEP =	dummy variable =1 for September, =0 otherwise
AUG86=	dummy variable =1 for August 1986, =0 otherwise
¥6P =	DPSA real disposable income in 6 period moving average

-48.692565

-139.329718

0.0000128361

Integrated Resource Planning

0.0057

0.0002

0.0001

Dependent Variable = SAL

Ordinary Least Squares Estimates

SS MS SE Re Du	SE SE SC SG Rsq STDin-W	6522.04 232.93 274.8256 0.9380 Vatson 1.4748	DFE Root MSE AIC Total Rsq	28 15.26204 268.962 0.9380	B 4 7 · · ·
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMP AUG86 Y6P	1 1 1 1	-435.755969 3.740801 -60.005378 7.0817621E-6	60.675 0.605 15.516 3.524E-7	-7.182 6.182 -3.867 20.098	0.0001 0.0001 0.0006 0.0001

SAL =total requirements for SC Saluda Rv Catawba participantTEMP =temperature at a given hourAUG86=dummy variable =1 for August 1986, =0 otherwiseY6P =DPSA real disposable income in 6 period moving average

an an

1991 Forecast: Summer Peak- Traffic Signals and Outdoor Lighting

- 1. Traffic signal load was forecasted by asumming a constant incremental growth of 0.2 Mw per year. T+TS schedule.
- 2. Outdoor lighting has no load at 5 PM. T2 schedule.

Integrated Resource Planning

WINTER PEAKS

1991 Forecast: Winter Peaks- Residential Class

Dependent Variable = RESKWCU

Autoreg Procedure

Estimates of the Autoregressive Parameters

Lag	Coefficient	Std Error	t Ratio
ī	-0.40793332	0.12456100	-3.274968
2	0.34002902	0.12456100	2.729819

Yule-Walker Estimates

SSE	1.081638	DFE	57
MSE	0.018976	Root MSE	0.137754
SBC	-43.9288	AIC	-65.9757
Req Rsq	0.7977	Total Rsg	0.8461

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	. 1	3.04789339	0.16072	18.963	0.0001
PD4	1	-0.00733982	0.00340	-2.162	0.0349
TEMP	1	-0.02760876	0.00355	-7.779	0.0001
WKEND	1	-0.24946297	0.09947	-2.508	0.0150
WATK8	1	0.19240205	0.03625	5.308	0.0001
DUM7	1	-0.22537383	0.09987	-2.257	0.0279
D1987	1	-0.24897731	0,08145	-3.057	0.0034
EHK	1	0.24830609	0.09511	2.611	0.0115

RESKWC	U=	total resid Kw/ total resid customers
PD4	=	prior day 4 PM temperature
TEMP	=	tempearture at a given hour
WKEND	=	dummy variable =1 for Saturday, =0 otherwise
WATK8	=	resid electric water heating saturation times 1.0 Kw at hour 8
		AM
DUM7	=	dummy variable =1 for hour 7 AM in December, 1989, =0 otherwise
D1987	=	dummy variable =1 for 1987, =0 otherwise
EHK	=	resid saturation of heat pumps times 4.7 Kw + other electric
		heating times 5.1 Kw

1991 Forecast: Winter Peaks- Commercial Class GA Schedule Dependent Variable = GAMW

Estimates of the Autoregressive Parameters

Lag	Coefficient	Std Error	t Ratio
ī	-0.60298945	0.09534926	-6.324008

Autoreg Procedure

Yule-Walker Estimates

SSE	82645.58	DFE	70
MSE	1180.651	Root MSE	34.3606
SBC	866.4292	AIC	834.9842
Reg Rsq	0.9057	Total Rsq	0.9311

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	480.328613	170.38	2.819	0.0063
COIN	1	18.758053	11.67	1.608	0.1124
TEMP	1	-3.694212	0.82	-4.495	0.0001
GRPNM6P	1	0.0000113714	2.493E-6	4.562	0.0001
D1980	1	-132.543875	36.36	-3.645	0.0005
GARP	1	-82.375609	31.09	-2.650	0.0099
NG4P	1	763.283928	310.26	2.460	0.0164
DGA1	1	-61.783313	15.07	-4.099	0.0001
DGA2	1	138.689047	31.55	4.395	0.0001
HOUR7	1	-182.604693	12.22	-14.946	0.0001
HOUR8	1	-107.614716	10.05	-10.712	0.0001
HOUR9	1	-29.978152	8.44	-3.551	0.0007

GAMW	=	total Mw for schedule GA
COIN	-	dummy variable =1 for day of system monthly peak, =0 otherwise
TEMP	=	tempearture at a given hour
GRPNM61	P=	non-manufacturing GRP in 6 period moving average
GRP	-	DPSA Gross Regional Product by SIC deflated by DPSA deflator
D1980		dummy variable =1 for 1980, =0 otherwise
GARP	=	price of electricity to GA schedule deflated by DPSA deflator
NG4P	=	price of commercial natural gas deflated by DPSA deflator
DGA1	=	dummy variable =1 for hour 7 AM 1981-1984, =0 otherwise
DGA2	=	dummy variable =1 for hour 7 AM Feb 5,1980, =0 otherwise
HOUR7	=	dummy variable =1 for hour 7 AM, =0 otherwise
HOUR8		dummy variable =1 for hour 8 AM, =0 otherwise
HOUR9	=	dummy variable =1 for hour 9 AM. =0 otherwise

Integrated Resource Planning

1991 Forecast: Winter Peaks- Commercial Class G Schedule

Dependent Variable = GKWCU

Estimates of the Autoregressive Parameters

Laq	Coefficient	Std Error	t Ratio
ī	-0.39303328	0.10836697	-3.626873

Autoreg Procedure Yule-Walker Estimates

14.63337	DFE	72
0.203241	Root MSE	0.450823
135.6209	AIC	111.5537
0.9143	Total Rsq	0.9180
	14.63337 0.203241 135.6209 0.9143	14.63337 DFE 0.203241 Root MSE 135.6209 AIC 0.9143 Total Rsq

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	3.35971823	0.64698	5.193	0.0001
GRPNM6P	1	8.7256063E-8	1.405E-8	6.211	0.0001
DG1	1	-0.59814932	0.22183	-2.696	0.0087
DGA1	• 1	-0.49376133	0.20611	-2.396	0.0192
D1986	1	0.42293977	0.25218	1.677	0.0979
D1987	1	-0.51736126	0.25363	-2.040	0.0450
HOUR7	1	-1.13824546	0.13393	-8.499	0.0001
HOUR9	1	1.35916903	0.11664	11.652	0.0001
HOUR10	1	1.75222598	0.12821	13.666	. 0.0001

GKWCU =	- 5	schedule G kw/ G customers
GRPNM6P=	= r	non-manufacturing GRP in 6 period moving average
GRP =	= Ľ	DPSA Gross Regional Product by SIC deflated by DPSA deflator
DG1 =	= c	lummy variable =1 for hour 7 AM 1979- Jan 12,1981, =0 otherwise
DGA1 =	= C	lummy variable =1 for hour 7 AM 1981-1984, =0 otherwise
D1986 =	= c	iummy variable =1 for 1986, =0 otherwise
D1987 =	= C	lummy variable =1 for 1987, =0 otherwise
HOUR7 =	= C	lummy variable =1 for hour 7 AM, =0 otherwise
HOUR8 =	= C	lummy variable =1 for hour 8 AM, =0 otherwise
HOUR9 =	= c	lummy variable =1 for hour 9 AM, =0 otherwise
HOUR10 =	= _ C	lummy variable =1 for hour 10 AM, =0 otherwise

1991 Forecast: Winter Peaks- Industrial Class Textiles Schedule

Dependent Variable = TEXMW

Ordinary Least Squares Estimates

	SSE MSE SBC Reg Rsq Durbin-W	89603.55 2421.718 459.8294 0.6480 atson 1.4911	DFE Root MSE AIC Total Rsq	37 49.21095 451.141 0.6480	; ; ;
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept GRP22 COIN CTEMP	: 1 1 1 1	853.745834 0.0001163258 -42.860574 0.971523	$ 109.60 \\ 0.000024 \\ 21.10 \\ 0.41 $	7.790 4.810 -2.031 2.378	0.0001 0.0001 0.0495 0.0227
FRI	1	-60.413347	28.04	-2.155	0.0378

TEXMW= total Mw for Textiles schedule GRP 22= GRP for SIC 22 GRP = DPSA Gross Regional Product by SIC deflated by DPSA deflator COIN = dummy variable =1 for day of system monthly peak, =0 otherwise CTEMP= tempearture at a given hour if TEMP>45 FRI = dummy variable =1 for Friday, =0 otherwise **1991 Forecast: Winter Peaks- Industrial Class Other Industrial Schedule** Dependent Variable = OIMW

Ordinary Least Squares Estimates

SSE	103775.4	DFE	39
MSE	2660.908	Root MSE	51.58399
SBC	553.2242	AIC	534.306
Reg Rsg	0.9294	Total Rsq	0.9294
Durbin-Watson	1.7165	. –	

Autoreg Procedure

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept	1	883.211801	65.779	13.427	0.0001
GRPOI6P	1	0.0000476458	3.841E-6	12.405	0.0001
DGRPOI	1	0.0000485632	0.000017	2.815	0.0076
TUE	1	49.369045	19.099	2.585	0.0136
HOUR7	1	-234.073564	32.343	-7.237	0.0001
HOUR9	1	65.040137	24.180	2.690	0.0105
HOUR10	1	68.192214	33.949	2.009	0.0515
HOUR11	1	165.775052	24.175	6.857	0.0001
HOUR2	1	219.134672	22.868	9.582	0.0001
HOUR3	1	296.333860	54.595	5.428	0.0001

OIMW total Mw for Manufacturing Other Industrial schedule GRPOI6P= GRP for Manufacturing less schedule Textiles GRP 22 DPSA Gross Regional Product by SIC deflated by DPSA deflator DGRP change in GRP Other Industrial = tue = dummy variable =1 for Tuesday, =0 otherwise HOUR7 dummy variable =1 for hour 7 AM, =0 otherwise HOUR9 3 dummy variable =1 for hour 9 AM, =0 otherwise dummy variable =1 for hour 10 AM, =0 otherwise HOUR10 =dummy variable =1 for hour 11 AM, =0 otherwise HOUR11 =HOUR2 dummy variable =1 for hour 2 PM, =0 otherwise = HOUR3 dummy variable =1 for hour 3 PM, =0 otherwise =

1991 Forecast: Winter Peaks 4 Catawba Participants

Dependent Variable = MPA

Ordinary Least Squares Estimates

SSE	5871.418	DFE	23
MSE	255.2791	Root MSE	15.97745
SBC	235.1204	AIC	229.9371
Reg Rsq	0.9051	Total Rsq	0.9051
Durbin-Watson	1.7495		

Variable	DF	B Value	Std Error	t Ratio Ap	prox Prob
Intercept	1	260.762480	25.325	10.297	0.0001
TEMP	1	-2.335311	0.591	-3.949	0.0006
PD4	1	-1.392406	0.535	-2.602	0.0159
Y6P	1	7.56524E-6	5.449E-7	13.884	0.0001

MPA = total Mw for NC MPA#1 Catawba participants
PD4 = prior day 4 PM temperature
TEMP= tempearture at a given hour
Y6P = DPSA real disposable income in 6 period moving average

Integrated Resource Planning

Dependent Variable = PMP

	SSE MSE SBC Reg Rsq Durbin-W	1014.999 48.33328 176.4166 0.9118 Vatson 1.5260	DFE Root MSE AIC Total Rsq	21 6.952214 171.5411 0.9118	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMP PD4 ¥6P	: 1 1 1 1	105.060810 -1.131569 -0.798115 3.2951191E-6	11.136 0.264 0.242 2.455E-7	9.434 -4.290 -3.293 13.423	0.0001 0.0003 0.0035 0.0001

MPA =	total Mw for SC PMPA Catawba participants
PD4 =	prior day 4 PM temperature
TEMP=	tempearture at a given hour
Y6P =	DPSA real disposable income in 6 period moving average

Dependent Variable = EMC

	SSE MSE SBC Reg Rsq Durbin-Wa	16831.14 701.2976 260.2592 0.9152 tson 1.9578	DFE Root MSE AIC Total Rsq	24 26.48202 256.3717 0.9152	
Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMP Y6P	2 1 1 1	143.866149 -7.381524 0.000012663	40.631 0.580 8.941E-7	3.541 -12.731 14.162	0.0017 0.0001 0.0001

EMC =	total Mw for NC EMC Catawba participants
PD4 =	prior day 4 PM temperature
TEMP=	tempearture at a given hour
Y6P =	DPSA real disposable income in 6 period moving average

Dependent Variable = SAL

	SSE MSE SBC Reg Durt	Rsq pin-W	2039.354 88.66759 206.5689 0.9640 Vatson 2.4059	DFE Root MSE AIC Total Rsq	23 9.416347 201.3856 0.9640	3 7 5
Variable	•	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMP PD4 Y6P	:	1 1 1 1	-12.0955884 -2.7443596 -0.5506240 7.6646802E-6	14.925 0.349 0.315 3.211E-7	-0.810 -7.874 -1.746 23.868	0.4260 0.0001 0.0942 0.0001

SAL =	total Mw for SC Saluda River Catawba participants
PD4 =	prior day 4 PM temperature
TEMP=	tempearture at a given hour
Y6P =	DPSA real disposable income in 6 period moving average

Integrated Resource Planning

1991 Forecast: Summer Peaks- Resale Class (combined model for summer and winter)

Dependent Variable = RESALE

SSE	1060.069	DFE	22
MSE	48.18495	Root MSE	6.941538
SBC	228.3752	AİC	215.4694
Rea Rsa	0.9711	Total Rsq	0.9711
Durbin-Watson	1.9652	_	

Variable	DF	B Value	Std Error	t Ratio	Approx Prob
Intercept TEMPMIN PD4 GRPM6S GRPM6W DY WIN D1983 D1983 D1987	1 1 1 1 1 1	-154.646276 2.935996 -1.597144 8.25034E-6 6.9264202E-6 0.000012439 243.142244 12.455644 -16.196601	$71.242 \\ 0.964 \\ 0.208 \\ 4.775E-7 \\ 4.58E-7 \\ 3.134E-6 \\ 71.815 \\ 5.337 \\ 5.602 \\ \end{array}$	-2.171 3.044 -7.686 17.279 15.122 3.969 3.386 2.334 -2.891	0.0410 0.0059 0.0001 0.0001 0.0001 0.0007 0.0027 0.0291 0.0085

RESALE	=	total Mw in Resale schedule
TEMPMIN	=	minimum morning temperature for summer season
PD4	=	prior day 4 PM temperature for winter season
GRPM6S	=	total manufacturing GRP in 6 period moving average times SUM
SUM	_	dummy variable =1 for summer season, =0 otherwise
GRPM6w	=	total manufacturing GRP in 6 period moving average times win
WIN	=	dummy variable =1 for winter season, =0 otherwise
DY	=	change from prior quarter in DPSA total real disposable income
D1983		dummy variable =1 for 1983, =0 otherwise
D1987	=	dummy variable =1 for 1987, =0 otherwise

1991 Winter Peak Forecast: Traffic Signals and Outdoor Lighting

1. Traffic Signal load was forecasted by assumming a constant incremental increase of 0.5 Mw per year. T+TS schedule.

2. Outdoor lighting was forecated by assumming that each T2 bill uses 0.166 Kw per bill. T2 demand is the product of Kw per bill times the number of customers (bills). T2 schedule.

- 199 - 2 - 200 - 20 - 200 - 20 - 200 - 20 - 200 - 20 - 20